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Section 1

TIME-SERIES MODELS
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The traditional use of time series models was
for forecasting

If we know

Vel =0y T @y, T &4
then
Ey..1=agtay,

Visag Ty T A1V T &
Ey,,=ayta Ly,
=ay talay,t+ay)
=ay +a,ay +(a))%,
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Capturing Dynamic Relationships

e With the advent of modern dynamic economic models, the
newer uses of time series models involve

— Capturing dynamic economic relationships

i — Hypothesis testing
i \ Developing “stylized facts”

— In a sense, this reverses the so-called scientific method
in that modeling goes from developing models that
follow from the data.
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The Random Walk Hypothesis

Vi1 =V T &
or
AV = &4

| wherey, = the price of a share of stock onday ¢, and ¢,, = a
Al \ random disturbance term that has an expected value of zero.

1| Now consider the more general stochastic difference equation
Ay =ag T ay, + &4
Ml The random walk hypothesis requires the testable restriction:

a,=a,; = 0.
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The Unbiased Forward Rate (UFR)
hypothesis

Given the UFR hypothesis, the forward/spot exchange rate relationship is:
Sr+1 :ft + €t (1-6)
where ¢, has a mean value of zero from the perspective of time period .
Consider the regression
Si1 =yt arf, + &y

\ The hypothesis requires a, = 0, a; = 1, and that the regression residuals &, have a
mean value of zero from the perspective of time period ¢.

The spot and forward markets are said to be in long-run equilibrium when ¢, =
0. Whenever s,,, turns out to differ from f,, some sort of adjustment must occur to
restore the equilibrium in the subsequent period. Consider the adjustment process

Sp2 =Sp1—al S =S 1+ &4y a>0 (1.7)
S =htbs—f 1+ & b>0 (1.8)

il where &,,,andee;,, both have an expected value of zero.
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Trend-Cycle Relationships

*  We can think of a time series as being composed of:

y, = trend + “cycle” + noise

— Trend: Permanent

— Cycle: predictable (albeit temporary)
 (Deviations from trend)

— Noise: unpredictable
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FIGURE 1.1 Hypothetical Time Series
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Series with decidedly upward trend
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Figure 3.1 Real GDP, Consumption and Investment
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GDP Volatility?
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Figure 3.2 Annualized Growth Rate of Real GDP
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Stock Market Volatility

12.5

10.0 —

7.5 -

5.0

percent change
e N
(e (9]
| \

X
()]
\

O
S
\

-1.5 -

'10.0 ‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\\‘\\
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Figure 3.3: Daily Changes in the NYSE US 100 Index: (Jan 4, 2000 - July 16, 2012)
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Co-Movements

16

14

percent per year
(o] oo 'C_\)

N

1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

L] | ER—— 5-year
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Common Trends
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Figure 3.5: Daily Exchange Rates (Jan 3, 2000 - April 4, 2013)
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Section 2

| DIFFERENCE EQUATIONS AND
ll THEIR SOLUTIONS
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Consider the function y,. = f(t*)

AYppy = f(@F+h)— [ (%)
= Voon = Ve

We can then form the first differences:

Ay, =f(t) -ft-1)=y,~y,,
Ay, =ft+) - [D) =y, -y,
Ay = f(HH2) = [t+]) = Y00 — Vi

More generally, for the forcing process x, a n-th order linear process 1s

n
Y, =a,+ Zaiyt—i T X,

i=1
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What is a solution?

A solution to a difference equation expresses the value
of y, as a function of the elements of the {x,} sequence
and 7 (and possibly some given values of the {y,}

\ sequence called initial conditions).

n

yt :ao +Zaiyt—i +)Ct

i=1
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Section 3
e [teration without an Initial Condition

e Reconciling the Two Iterative Methods

L\

e Nonconvergent Sequences

\ !
\'\
'\

SOLUTION BY ITERATION
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Solution by Iteration

Consider the first-order equation

yt:a0+a1yt—1+5t (1-17)

Given the value of y,, 1t follows that y, will be given b
W=aytay,té

\
a \ In the same way, y, must be
1\ W=aytay &
| =aytafa, tay,telte
| =a,+aya, +(a,)y, taetes
|} Continuing the process in order to find y;, we obtain
| 3= aytay,t &
=a)[l+a +(a)]+ @)y, ta’s +ae+eg
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From
V3= o[l +a, +(a)’ ]+ (a)) yy+aj’e +tae+eg

you can verify that for all > 0, repeated iteration yields
t-1 t—1
l t l
Y= aOZai Tay, T Zaigt—i
i=0 i=0

If | a, | <1, in the limit

y,=4a, /(1_a1)+zai€t—i
i=0

Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.



Backwards Iteration

[teration from y, back to y, yields exactly the formula given
by (1.18).

Since y,=a,+ay, ; + ¢, 1t follows that
yi=aytalaytay,+é,]+¢

| =ay(l +a)taeg  +e¢&tallaygtay ;+ &,
A\ If|a, | <1,in the limit

vi=a/(1-a)+) aie.,
i=0
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FIGURE 1.2 Convergent and Monconvergent Sequancas
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\ \ Section 4
| e The Solution Methodology
e Generalizing the Method

AN ALTERNATIVE
| SOLUTION METHODOLOGY
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Does 1t converge? Characteristic Roots

Since the intercept and the & sequence have nothing to do
with the 1ssue of convergence, consider:

Ve = A1V
L \ A solution 1s y,=A(a,)
|\ Proof Aal =a,Aa]”

' e It | a, | < 1, the y, converges to zero as ¢ approaches infinity.
Convergence 1s direct if 0 < a,; <1 and oscillatory if —1 <a, <0.

. If| a, = 1, the homogeneous solution is not convergent. If a, > 1, y,
approaches oo as ¢ increases. If a; <—1, the y, oscillates explosively.

|| I a, = 1, any arbitrary constant 4 satisfies the homogeneous equation
| Y, =Y. If a; = -1, the system 1s meta-stable: = 1 for even values of ¢
and —1 for odd values of ¢.
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Generalizing the Method
Y= iznl:aiyti

Aa'—aAda™ —aAa™?— ...— a, Aa’™ =0

There are n roots

| § In the nth-order case

yf =A(ay) T4 ()' + ...

For convergence, all of the roots must be less than unity in absolute value (or
inside the unit circle if complex).
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In an nth-order equation, a necessary condition for all characteristic roots to lie inside the unit

circle is
n
Zai <1
i=1

Since the values of the a; can be positive or negative, a sufficient condition for all
characteristic roots to lie inside the unit circle is

n

Dla K1

i=1
At least one characteristic root equals unity if

iaizl
i=1

Any sequence that contains one or more characteristic roots that equal unity is
4, | called a unit root process.

W\ For a third-order equation, the stability conditions can be written as
l-a,—a,—a;>0

l+a,—-a,ta;>0

W 1—-aa,+a,—a?>0

W 3+a ta,-3a,>0 or3—a, +a,+3a;>0

Il Given that the first three inequalities are satisfied, one of the last conditions is
| redundant.
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The Solution Methodology

STEP 1: form the homogeneous equation and find all
homogeneous solutions;

STEP 2: find a particular solution;

STEP 3: obtain the general solution as the sum of the particular
solution and a linear combination of all homogeneous solutions;

STEP 4: eliminate the arbitrary constant(s) by imposing the initial
condition(s) on the general solution.
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R |

| \ \ Section 5

| e Stability Conditions

e Higher-Order Systems

THE COBWEB MODEL
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Setting supply equal to demand:
b+ pp.+e=a—p,

=(fp.t+(@a-b)y—¢&ly

or

The homogeneous equation is p, = (—f/))p, ;-

If the ratio f/y1s less than unity, you can iterate (1.39) backward
from p, to verify that the particular solution for the price is

’ b 15 py
pl = 7+ﬂ 7;(ﬂ7)5

Stability requires | f/y | <1
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FIGURE 1.2 The Cobweb Model
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\ \ Section 6
| * Stability Conditions
e Higher-Order Systems

SOLVING HOMOGENEOUS
| DIFFERENCE EQUATIONS




Consider the second-order equation
Vi@V — a5 =0
Aa'—adat™ —a,Aa’?=0

If you divide (1.46) by A2, the problem is to find the values of
o that satisfy

o) _

There are two characteristic roots. Hence the homogeneous
solution 1s

A(ay) + Ay(a,)
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THE THREE CASES

CASE 1
If a,> + 4a, > 0, d is a real number and there will be two
distinct real characteristic roots.
CASE 2
If +4a,=0, 1t follows thatd =0 and a, = a, = a,/2.
A homogeneous solution 1s a,/2. However, when d = 0,
| there 1s a second homogeneous solution given by #a,/2)".
4\ CASE 3
If a,?> + 4a, <0, it follows that d is negative so that the
characteristic roots are imaginary.
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WORKSHEET 1.1: SECOND-ORDER EQUATIONS
Example 1: y,=0.2y,, +0.35y, ,. Hence: a,=0.2 and a, =0.35

Form the homogeneous equation: y,— 0.2y, , — 0.35y,, =0

d = +4a, so that d = 1.44. Given that d > 0, the roots will be real and distinct. Substitute y, = ¢/ into
the homogenous equation to obtain: & — 0.2 1 —0.352=0

Divide by /=2 to obtain the characteristic equation: & —0.2a—0.35=0
Compute the two characteristic roots: o, = 0.7 a, =—0.5

The homogeneous solution is: 4,(0.7)" + A,(=0.5)".
Example 2: y,= 0.7y, , + 0.35y, ,. Hence: a,=0.7 and a, =0.35

Form the homogeneous equation: y,— 0.7y, , — 0.35y,, =0

Thus d = +4a, =1.89. Given that d > 0, the roots will be real and distinct. Form the characteristic
equation o — 0.7~ - 0.35a2=0

Divide by /=2 to obtain the characteristic equation: & —0.7a —0.35=0

Compute the two characteristic roots: o, = 1.037 a, =—0.337

The homogeneous solution is: 4,(1.037)" + A,(—0.337)".
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Section 8

| THE METHOD OF UNDETERMINED
ll COEFFICIENTS
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The Method of Undetermined Coefficients

Consider the simple first-order equation: y,=a, + ay, | + ¢
Posit the challenge solution:

y,=b+ Zaigt—i
i=0

by taggtag tae, .. = agtallbytas Tag,t 1t

| l“'x.“- Cll - alao — O
\."\‘ az_alal — O

by—ay—ab,=0
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The Method of Undetermined Coefficients 11

Consider:
VT Gyt ay, Tay, ,TéE (1.68)

Since we have a second-order equation, we use the challenge solution
Y =bytbit+ byt tagtag tae,t

where b, b,, b,, and the a; are the undetermined coefficients. Substituting the
challenge solution into (1.68) yields

N [both by ]+ agg +ajg T ayg T = agtay[by+ byt 1) + 2192@ -1y
tags,  tag,tag 3t T a) byt bi(t—2)+ by(t—2)
tapg,tag 3t a6t 1+ ¢

| Hence
a, =
a, = a,q, [so that a, = a,]
a, = a,a, + a,a, [so that a, = (a,)* + a,]
a,=a,a, + a,a, [so that a; = (a,)’ + 2a,a,]

W Notice that for any value of j > 2, the coefficients solve the second-order
| difference equation a; = a,a, | + a,a; ,.
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Section 9

e Lag Operators in Higher-Order Systems

L AG OPERATORS
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Lag Operators

The lag operator L 1s defined to be:

Ly, =y,
| ‘ § Thus, L’ preceding y, simply means to lag y, by i periods.
1| The lag of a constant 1s a constant: Lc = c.

The distributive law holds for lag operators. We can set:

| L+ Ly = Ly, Uy, =yt
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Lag Operators (cont ’d)

* Lag operators provide a concise notation for writing difference
equations. Using lag operators, the p-th order equation

yvi=a,tay,+.. tay  +egcan be written as:

' (1-a,L-a,l?-..- a lP)y,= ¢,
8 \ or more compactly as:
| ALy, = ¢,

\ | v =a,+ay, +.. + ay.,tetpe, .. the., as
A(L)y, = a, + B(L)e,

where: A(L) and B(L) are polynomials of orders p and g, respectively.
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APPENDIX 1.1: IMAGINARY ROOTS
AND DE MOIVRE’S THEOREM

Imaginary

0 a Real

FIGURE A1.1 A Graphical Reprasentation of Complex Numbaers
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