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TIME-SERIES MODELS
Section 1
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The traditional use of time series models was 
for forecasting

If we know
yt+1 = a0 + a1yt + t+1

then 
Etyt+1 = a0 + a1yt

and since 
yt+2 = a0 + a1yt+1 + t+2

Etyt+2 = a0 + a1Etyt+1

= a0 + a1(a0 + a1yt)
= a0 + a1a0 + (a1)2yt
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Capturing Dynamic Relationships

• With the advent of modern dynamic economic models, the 
newer uses of time series models involve
– Capturing dynamic economic relationships
– Hypothesis testing

• Developing “stylized facts” 
– In a sense, this reverses the so-called scientific method 

in that modeling goes from developing models that 
follow from the data.
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The Random Walk Hypothesis

yt+1 = yt + t+1

or
yt+1 = t+1

where yt = the price of a share of stock on day t, and t+1 = a 
random disturbance term that has an expected value of zero. 

Now consider the more general stochastic difference equation

yt+1 = a0 + a1yt + t+1

The random walk hypothesis requires the testable restriction: 

a0 = a1 = 0.
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The Unbiased Forward Rate (UFR) 
hypothesis 
Given the UFR hypothesis, the forward/spot exchange rate relationship is:

st+1 = ft + t+1 (1.6)
where t+1 has a mean value of zero from the perspective of time period t.
Consider the regression

st+1 = a0 + a1ft + t+1

The hypothesis requires a0 = 0, a1 = 1, and that the regression residuals t+1 have a 
mean value of zero from the perspective of time period t.

The spot and forward markets are said to be in long-run equilibrium when t+1 = 
0. Whenever st+1 turns out to differ from ft, some sort of adjustment must occur to 
restore the equilibrium in the subsequent period. Consider the adjustment process

st+2 = st+1 – a[ st+1 – ft ] + st+2 a > 0 (1.7)
ft+1 = ft + b [ st+1 – ft ] + ft+1 b > 0 (1.8)

where st+2 andeft+1 both have an expected value of zero. 
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Trend-Cycle Relationships

• We can think of a time series as being composed of:

yt = trend + “cycle” + noise

– Trend: Permanent 
– Cycle: predictable (albeit temporary) 

• (Deviations from trend)
– Noise: unpredictable
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Series with decidedly upward trend

Figure 3.1 Real GDP, Consumption and Investment
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GDP Volatility?

Figure 3.2 Annualized Growth Rate of Real GDP
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Figure 3.3: Daily Changes in the NYSE US 100 Index: (Jan 4, 2000 - July 16, 2012)
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Co-Movements

Figure 3.4 Short- and Long-Term Interest Rates
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Figure 3.5: Daily Exchange Rates (Jan 3, 2000 - April 4, 2013)
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DIFFERENCE EQUATIONS AND 
THEIR SOLUTIONS

Section 2
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Consider the function yt* = f(t*)

We can then form the first differences:

yt = f(t) – f(t–1)  yt – yt–1
yt+1 = f(t+1) – f(t)  yt+1 – yt
yt+2 = f(t+2) – f(t+1)  yt+2 – yt+1

More generally, for the forcing process xt a n-th order linear process is 
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What is a solution?

A solution to a difference equation expresses the value 
of yt as a function of the elements of the {xt} sequence 
and t (and possibly some given values of the {yt} 
sequence called initial conditions).

The key property of a solution is that it satisfies the 
difference equation for all permissible values of t and 
{xt}.
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SOLUTION BY ITERATION

Section 3
• Iteration without an Initial Condition
• Reconciling the Two Iterative Methods
• Nonconvergent Sequences
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Solution by Iteration
Consider the first-order equation

yt = a0 + a1yt–1 + t (1.17)

Given the value of y0, it follows that y1 will be given b
y1 = a0 + a1y0 + 1

In the same way, y2 must be
y2 = a0 + a1y1 + 2

= a0 + a1[a0 + a1y0 + 1] + 2
= a0 + a0a1 + (a1)2y0 + a11 + 2

Continuing the process in order to find y3, we obtain
y3 = a0 + a1y2 + 3

= a0[1 + a1 + (a1)2] + (a1)3 y0 + a1
21 + a12 + 3
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From
y3 = a0[1 + a1 + (a1)2] + (a1)3 y0 + a1

21 + a12 + 3

you can verify that for all t > 0, repeated iteration yields
1 1
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If | a1 | < 1, in the limit
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Backwards Iteration

Iteration from yt back to y0 yields exactly the formula given 
by (1.18). 
Since yt = a0 + a1yt–1 + t, it follows that

yt = a0 + a1 [a0 + a1yt–2 + t–1] + t

= a0(1 + a1) + a1t–1 + t + a1
2[a0 + a1yt–3 + t–2]

If | a1 | < 1, in the limit
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AN ALTERNATIVE 
SOLUTION METHODOLOGY

Section 4
• The Solution Methodology
• Generalizing the Method
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Does it converge? Characteristic Roots

Since the intercept and the t sequence have nothing to do 
with the issue of convergence, consider:

yt = a1yt–1

A solution is yt = A(a1)t

Proof:

• If a1 < 1, the yt converges to zero as t approaches infinity. 
Convergence is direct if 0 < a1 < 1 and oscillatory if –1 < a1 < 0. 

• If a1 > 1, the homogeneous solution is not convergent. If a1 > 1, yt
approaches ∞ as t increases. If a1 < –1, the yt oscillates explosively. 

• If a1 = 1, any arbitrary constant A satisfies the homogeneous equation 
yt = yt–1. If a1 = –1, the system is meta-stable: = 1 for even values of t 
and –1 for odd values of t. 

1
1 1 1
t tAa a Aa 
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Generalizing the Method

1
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A t – a1A t-1 – a2At-2 – … – anA t-n = 0

There are n roots

In the nth-order case

= A1(1)t + A2(2)t + …

For convergence, all of the roots must be less than unity in absolute value (or 
inside the unit circle if complex). 

  h
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In an nth-order equation, a necessary condition for all characteristic roots to lie inside the unit 
circle is

Since the values of the ai can be positive or negative, a sufficient condition for all 
characteristic roots to lie inside the unit circle is

Any sequence that contains one or more characteristic roots that equal unity is 
called a unit root process. 

For a third-order equation, the stability conditions can be written as
1 – a1 – a2 – a3 > 0
1 + a1 – a2 + a3 > 0
1 – a1a3 + a2 – a3

2 > 0
3 + a1 + a2 – 3a3 > 0  or 3 – a1 + a2 + 3a3 > 0
Given that the first three inequalities are satisfied, one of the last conditions is 
redundant.

At least one characteristic root equals unity if
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STEP 1:  form the homogeneous equation and find all n
homogeneous solutions; 

STEP 2:  find a particular solution; 

STEP 3:  obtain the general solution as the sum of the particular 
solution and a linear combination of all homogeneous solutions;

STEP 4:  eliminate the arbitrary constant(s) by imposing the initial 
condition(s) on the general solution. 

The Solution Methodology
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THE COBWEB MODEL

Section 5
• Stability Conditions
• Higher-Order Systems
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Setting supply equal to demand:

b + pt–1 + t = a – pt
or 

pt = (–/)pt–1 + (a – b)/ – t/

The homogeneous equation is pt = (–/)pt–1. 

If the ratio / is less than unity, you can iterate (1.39) backward 
from pt to verify that the particular solution for the price is
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Stability requires | / | < 1
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SOLVING HOMOGENEOUS
DIFFERENCE EQUATIONS

Section 6
• Stability Conditions
• Higher-Order Systems
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Consider the second-order equation

yt – a1yt–1 – a2yt–2 = 0 

A t – a1A t-1 – a2A t-2 = 0

If you divide (1.46) by At–2, the problem is to find the values of 
 that satisfy

2 – a1 – a2 = 0 

There are two characteristic roots. Hence the homogeneous 
solution is

A1(1)t + A2(2)t
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THE THREE CASES

CASE 1
If a1

2 + 4a2 > 0, d is a real number and there will be two 
distinct real characteristic roots. 

CASE 2
If  + 4a2 = 0, it follows that d = 0 and a1 = a2 = a1/2. 
A homogeneous solution is a1/2. However, when d = 0, 
there is a second homogeneous solution given by t(a1/2)t.

CASE 3
If a1

2 + 4a2 < 0, it follows that d is negative so that the 
characteristic roots are imaginary. 
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WORKSHEET 1.1: SECOND-ORDER EQUATIONS
Example 1:  yt = 0.2yt-1 + 0.35yt2.  Hence:  a1 = 0.2 and a2 = 0.35

Form the homogeneous equation: yt  0.2yt1  0.35yt2 = 0

d =  + 4a2 so that d = 1.44. Given that d > 0, the roots will be real and distinct. Substitute yt = t into 
the homogenous equation to obtain: t – 0.2t1 – 0.35t2 = 0

Divide by t2 to obtain the characteristic equation: 2 – 0.2  0.35 = 0

Compute the two characteristic roots: 1 = 0.7 2 = −0.5

The homogeneous solution is: A1(0.7)t + A2(0.5)t. 
Example 2: yt = 0.7yt-1 + 0.35yt2.  Hence:  a1 = 0.7 and a2 = 0.35

Form the homogeneous equation: yt  0.7yt-1  0.35yt2 = 0

Thus d =  + 4a2 = 1.89. Given that d > 0, the roots will be real and distinct. Form the characteristic 
equation t – 0.7t1 – 0.35t2 = 0

Divide by t2 to obtain the characteristic equation: 2 – 0.7 – 0.35 = 0

Compute the two characteristic roots: 1 = 1.037 2 = 0.337

The homogeneous solution is: A1(1.037)t +  A2(–0.337)t. 
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THE METHOD OF UNDETERMINED 
COEFFICIENTS

Section 8
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The Method of Undetermined Coefficients

Consider the simple first-order equation: yt = a0 + a1yt–1 + t

Posit the challenge solution:

b0 + a0t + a1t–1 + a2t–2 + … =  a0 + a1[b0 + a0t–1 + a1t–2 +  ] + t

0 − 1 = 0
a1 – a1a0 = 0
a2 – a1a1 = 0
b0 – a0 – a1b0 = 0

0 i t it
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The Method of Undetermined Coefficients II
Consider: 
yt =  a0 + a1yt–1 + a2yt–2 + t (1.68)

Since we have a second-order equation, we use the challenge solution
yt = b0 + b1t + b2t2 + a0t + a1t–1 + a2t–2 + 

where b0, b1, b2, and the ai are the undetermined coefficients. Substituting the 
challenge solution into (1.68) yields

[b0+b1t+b2t2] + a0t + a1t–1 + a2t–2+  = a0 + a1[b0 + b1(t – 1) + b2(t – 1)2 

+ a0t–1 + a1t–2 + a2t–3 +  ] + a2[b0 + b1(t – 2) + b2(t – 2)2

+ a0t–2 + a1t–3 + a2t-4 +  ] + t

Hence:
a0 = 1
a1 = a1a0 [so that a1 = a1]
a2 = a1a1 + a2a0 [so that a2 =  (a1)2 + a2]
a3 = a1a2 + a2a1 [so that a3 =  (a1)3 + 2a1a2]

Notice that for any value of j  2, the coefficients solve the second-order 
difference equation aj = a1aj–1 + a2aj–2. 
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LAG OPERATORS

Section 9
• Lag Operators in Higher-Order Systems
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Lag Operators

The lag operator L is defined to be:

Liyt = yt-i

Thus, Li preceding yt simply means to lag yt by i periods.

The lag of a constant is a constant: Lc = c.  

The distributive law holds for lag operators.  We can set:  

(Li + Lj)yt = Liyt + Ljyt = yt-i + yt-j
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Lag Operators (cont’d)

• Lag operators provide a concise notation for writing difference
equations. Using lag operators, the p-th order equation

yt = a0 + a1yt-1 + ... + apyt-p + εt can be written as:

(1 - a1L - a2L2 - ... - apLp)yt = εt
or more compactly as:

A(L)yt = εt

As a second example,
yt = a0 + a1yt-1 + ... + apyt-p + εt + β1εt-1 + ... + βqεt-q as:

A(L)yt = a0 + B(L)εt

where: A(L) and B(L) are polynomials of orders p and q, respectively. 
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APPENDIX 1.1: IMAGINARY ROOTS 
AND DE MOIVRE’S THEOREM


