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Figure 5.1 Domestic and Transnational Terrorism

Panel (a): Domestic Incidents
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Panel (b): Transnational Incidents
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An Intervention Model

3

Consider the model used in Enders, Sandler, and Cauley 
(1990) to study the impact of metal detector technology 
on the number of skyjacking incidents:

yt = a0 + a1yt–1 + c0zt + t, a1 < 1
where zt is the intervention (or dummy) variable that takes 
on the value of zero prior to 1973Q1 and unity beginning 
in 1973Q1 and t is a white-noise disturbance. In terms of 
the notation in Chapter 4, zt is the level shift dummy 
variable DL.
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Steps in an Intervention Model

• STEP 1: Use the longest data span (i.e., either the pre- or 
the postintervention observations) to find a plausible set of 
ARIMA models. 
– You can use the Perron (1989) test for structural 

change discussed in Chapter 4. 
• STEP 2: Estimate the various models over the entire 

sample period, including the effect of the intervention. 
• STEP 3: Perform diagnostic checks of the estimated 

equations.

4
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Figure 5.2: Skyjackings
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Figure 5.3: Typical Intervention Functions
Panel (a): Pure Jump
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Table 5.1: Metal Detectors and Skyjackings

7

Pre‐
Interventi

on
Mean

a1 Impact  
Effect
(c0)

Long‐Run
Effect

Transnational 
{TSt}

3.032
(5.96)

0.276
(2.51)

1.29
(‐2.21)

1.78

U.S. Domestic 
{DSt}

6.70
(12.02)

5.62
(8.73)

5.62

Other Skyjackings 
{OSt}

6.80
(7.93)

0.237
(2.14)

3.90
(3.95)

5.11

Notes:
1. t-statistics are in parentheses
2. The long-run effect is calculated as c0/(1  a1)
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ADLs and Transfer Functions

8
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Transfer Functions
• yt = a0 + A(L)yt–1 + C(L)zt + B(L)t 

where A(L), B(L), and C(L) are polynomials in the lag 
operator L. 
• In a typical transfer function analysis, the researcher will 

collect data on the endogenous variable {yt} and on the 
exogenous variable {zt}. The goal is to estimate the 
parameter a0 and the parameters of the polynomials A(L), 
B(L), and C(L). Unlike an intervention model,{zt} is not 
constrained to have a particular deterministic time path.

• It is critical to note that transfer function analysis assumes 
that {zt} is an exogenous process that evolves 
independently of the {yt} sequence.

9
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The CCVF

• The cross-correlation between yt and zt–i is defined to be
yz(i)  cov(yt, zt–i)/(yz )

• where y and z = the standard deviations of yt and zt,
respectively. The standard deviation of each sequence is 
assumed to be time independent.

• Plotting each value of yz(i) yields the cross-correlation 
function (CCF) or cross-correlogram.

10
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Interpreting the CCVF

• yt = a0 + a1yt–1 + C(L)zt + t (5.7)

The theoretical CCVF (and CCF) has a shape with the 
following characteristics:
• All yz(i) will be zero until the first nonzero element of the polynomial 

C(L).
• A spike in the CCVF indicates a nonzero element of C(L). Thus, a 

spike at lag d indicates that zt–d directly affects yt.
• All spikes decay at the rate a1; convergence implies that the absolute 

value of a1 is less than unity. If 0 < a1 < 1, decay in the cross-
covariances will be direct, whereas if –1 < a1 < 0, the decay pattern 
will be oscillatory. 

• Only the nature of the decay process changes if we generalize 
equation (5.7) to include additional lags of yt–i. 

11
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Estimating a Parsimonous ADL

• STEP 1: Estimate the zt sequence and an AR process.
• STEP 2: Identify plausible candidates for C(L)

– Constrict the filtered {yt} sequence by applying the 
filter D(L) to each value of {yt}; that is, use the results 
of Step 1 to obtain D(L)yt  yft. 

• STEP 3: Identify plausible candidates for the A(L) 
function. Regress yt (not yft) on the selected values of {zt} 
to obtain a model of the form
yt = C(L)zt + et

• STEP 4: Combine the results of Steps 2 and 3 to estimate 
the full equation. At this stage, you will estimate A(L), 
and C(L) simultaneously. 
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Consider two of the equations from the Brookings Quarterly Econometric Model 
CNF = 0.0656YD - 10.93[PCNF/PC]t-1 + 0.1889[N + NML]t-1

(0.0165       (2.49) (0.0522)

CNEF =  4.2712 + 0.1691YD - 0.0743[ALQDHH/PC]t-1
(0.0127) (0.0213)

where: CNF = personal consumption expenditures on food
YD = disposable personal income
PCNF = price deflator for personal consumption expenditures on food
PC = price deflator for personal consumption expenditures
N = civilian population
NML = military population including armed forces overseas
CNEF = personal consumption expenditures for nondurables other than food
ALQDHH =end-of-quarter stock of liquid assets held by households

and:  standard errors are in parenthesis.
The remaining portions of the model contain estimates for the other 

components of aggregate consumption, investment spending, government 
spending, exports, imports, for the financial sector, various price determination 
equations, …

The Brookings Model
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Are such ad hoc behavioral assumptions consistent with economic theory?  
Sims (p.3, 1980) considers such multi-equation models and argues that:

"... what 'economic theory' tells us about them is 
mainly that any variable that appears on the right-hand-side of 
one of these equations belongs in principle on the right-hand-
side of all of them.  To the extent that models end up with very 
different sets of variables on the right-hand-side of these 
equations, they do so not by invoking economic theory, but (in 
the case of demand equations) by invoking an intuitive 
econometrician's version of psychological and sociological 
theory, since constraining utility functions is what is involved 
here.  Furthermore, unless these sets of equations are 
considered as a system in the process of specification, the 
behavioral implications of the restrictions on all equations 
taken together may be less reasonable than the restrictions on 
any one equation taken by itself."
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"St. Louis model" estimated by Anderson and Jordan (1968).

17

Using U.S. quarterly data from 1952 - 1968, they estimated the following 
reduced-form GNP determination equation: 

Yt = 2.28 + 1.54Mt + 1.56Mt-1 + 1.44Mt-2 + 1.29Mt-3
+ 0.40Et + 0.54Et-1 - 0.03Et-2 - 0.74Et-3 (5.16)

where Yt = change in nominal GNP
Mt = change in the monetary base
Et = change in "high employment" budget deficit

Testing whether the sum of the monetary base coefficients (i.e. 1.54 + 
1.56 + 1.44 + 1.29 = 5.83) differs from zero yields a t-value of 7.25. 
Hence, they concluded that changes in the money base translate into 
changes in nominal GNP. On the other hand, the test that the sum of the 
fiscal coefficients (0.40 + 0.54 - 0.03 - 0.74 = 0.17) equals zero yields a t-
value of 0.54. According to Anderson and Jordan, the results support 
"lagged crowding out" in the sense that an increase in the budget deficit 
initially stimulates the economy. 
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Reduced Form

18

Sims (1980) also points out several problems with this type of analysis. 

Ensuring that there is no feedback between GNP and the money base or the budget 
deficit. However, the assumption of no feedback is unreasonable if the monetary or 
fiscal authorities deliberately attempt to alter nominal GNP. As in the thermostat 
example, if the monetary authority attempts to control the economy by changing the 
money base, we can not identify the "true" model. In the jargon of time-series 
econometrics, changes in GNP would "cause" changes in the money supply. One 
appropriate strategy would be to simultaneously estimate the GNP determination 
equation and the money supply feedback rule. 

Comparing the two types of models, Sims (pp. 14-15, 1980) states:
"Because existing large models contain too many incredible restrictions, empirical 
research aimed at testing competing macroeconomic theories too often proceeds in a 
single- or few- equation framework. For this reason alone, it appears worthwhile to 
investigate the possibility of building large models in a style which does not tend to 
accumulate restrictions so haphazardly. ... It should be feasible to estimate large-scale 
macromodels as unrestricted reduced forms, treating all variables as endogenous." 
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Structural VARs

19

yt = b10  b12zt + 11yt-1 + 12zt-1 + εyt
zt = b20  b21yt + 21yt-1 + 22zt-1 + εzt

0 1 -1t t tBx x    
Pre-multiply by B-1 to obtain

xt = A0 + A1xt-1 + et

1 1 1
0 0 1 1; ;  and- -

t t= = eA B A B B  

112

121

1
1

10t t yt11 12

20t t zt21 22

y yb b= +  +
z zb b

 
 





         
         

         



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

A 1st-Order VAR in Standard Form

20

yt = a10 + a11yt-1 + a12zt-1 + e1t

zt = a20 + a21yt-1 + a22zt-1 + e2t

e1t = (yt – b12zt)/(1 – b12b21) 
e2t = (zt – b21yt)/(1 – b12b21) 
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The VAR Structure

21

Consider the following 2-variable 1-lag VAR in standard form:

yt = a10 + a11yt-1 + a12zt-1 + e1t

zt = a20 + a21y t-1 + a22zt-1 + e2t

It is assumed that e1t and e2t are serially uncorrelated but the covariance 
Eet1e2t need not be zero. If the variances and covariance are time-invariant, 
we can write the variance/covariance matrix as:

where: Var(eit) = ii and Cov(e1t,e2t) = σ12 = σ21.

11

22
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21
 = 

 
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Forecasting

 If your data run through period T, it is straightforward to 
obtain the one-step-ahead forecasts of your variables using 
the relationship 

 ETxT+1 = A0 + A1xT.
 A two-step-ahead forecast can be obtained recursively 

from ETxT+2 = A0 + A1ETxT+1 = A0 + A1[A0 + A1xT]. 
 Since unrestricted VARs are overparameterized, the 

forecasts may be unreliable. In order to obtain a 
parsimonious model, many forecasters would purge the 
insignificant coefficients from the VAR. 

 After reestimating the so-called near-VAR model using 
SUR, it could be used for forecasting purposes. 

22
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Terrorism and Israeli real per capita GDP

23
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  

The aim of the study was to investigate the effects of 
terrorism (T) on the growth rates of Israeli real per capita 
GDP (GDPt), investment (It), exports (EXPt), and 
nondurable consumption (NDCt). The authors use quarterly 
data running from 1980Q1 to 2003Q3 so that there are 95 
total observations.
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Cost of terrorism

 To forecast the values of xT+2 and beyond, it is necessary to 
know the magnitude of the terrorism variable over the 
forecast period. Toward this end, they supposed that all 
terrorism actually ended in 2003Q4 (so that all values of Tj
= 0 for j > 2003Q4). Under this assumption, the annual 
growth rate of GDP was estimated to be 2.5% through 
2005Q3. Instead, when they set the values of Tj at the 
2000Q4 to 2003Q4 period average, the growth rate of GDP 
was estimated to be zero. Thus, a steady level of terrorism 
would have cost the Israeli economy all of its real output 
gains. In actuality, the largest influence of terrorism was 
found to be on investment. The impact of terrorism on 
investment was twice as large as the impact on real GDP.

24



Copyright © 2015 John, Wiley & Sons, Inc. All rights reserved.

Impulse Responses

25

Consider a 2-variable model:

The impulse response function is obtained using the 
moving average representation:
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Impulse Responses: An Example
x(t) = 0.7*x(t-1) + 0.2*y(t-1) + e1(t)

y(t) = 0.2*x(t-1) + 0.7y(t-1) + e2(t)

e2(t) = 0.2*e1(t)

1-unit e1 shock 1-unit e2 shoc
t x(t) y(t) t x(t) y(t)
1 1 0.2 1 0 1
2 0.74 0.34 2 0.2 0.7
3 0.586 0.386 3 0.28 0.53
4 0.487 0.387 4 0.302 0.427
5 0.419 0.369 5 0.297 0.359
6 0.367 0.342 6 0.28 0.311
7 0.325 0.313 7 0.258 0.274
8 0.29 0.284 8 0.235 0.243
9 0.26 0.257 9 0.213 0.217
10 0.233 0.232 10 0.193 0.195
11 0.21 0.209 11 0.174 0.175
12 0.188 0.188 12 0.157 0.157
13 0.17 0.169 13 0.141 0.141
14 0.153 0.152 14 0.127 0.127

26
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The Residuals vs the Pure Shocks

28

e1t = (εyt - b12εzt)/(1-b12b21)
e2t = (εzt - b21εyt)/(1-b12b21)

If we set b12 or b21equal to zero, we can identify the shocks
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Identification

29

e1t = g111t + g122t
e2t = g211t + g222t

or:
et = Gt

If we let var(1t) =     and var(2t) =        , it follows that:

E1t2t 

The problem is to identify the unobserved values of 1t and 2t
from the regression residuals e1t and e2t.

2
1

2
2

2
1

2
2

0
0




 
   

 
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Identification 2

If we knew the four values g11, g12 g13 and g14 we could 
obtain all of the structural shocks for the regression 
residuals. Of course, we do have some information about the 
values of the gij. Consider the variance/covariance matrix of 
the regression residuals:

Eee' = 
11 12

21 22

 
 
 

   
 
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Sim’s Recursive Ordering

31

Sim’s recursive ordering restricts on the primitive system such 
that the coefficient b21 is equal to zero. Writing (5.17) and 
(5.18) with the constraint imposed yields

yt = b10 – b12zt + g11yt–1 + g12zt–1 + eyt

zt = b20 + g21yt–1 + g22zt–1 + ezt

Similarly, we can rewrite the relationship between the pure 
shocks and the regression residuals given by (5.22) and (5.23) 
as
e1t = yt – b12zt
e2t = zt
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Sims’ Recursive Ordering

32

e1t = yt – b12zt
e2t = zt

so that  
var(e1) = 2 2 2

12y zb    (5.31) 

var(e2) = 2
z     (5.32) 

cov(e1, e2) = –b12
2
z   (5.33) 
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Hence, it must be the case that:

Eetet' = EGtt'G '

Since Eetet' =  and Ett' = , it follows that:

11 12

21 22

'G G
 
 
 

  
 

2 2
11 12 11 12 11 21 12 22

2 2
21 22 11 21 12 22 21 22

g g g g g g
g g g g g g

 
 

   
        

In general you must fix (n2 – n)/2 elements for exact 
identification
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Hypothesis Tests

34

Let u and r be the variance/covariance matrices of the 
unrestricted and restricted systems, respectively. Then, in 
large samples:

(T-c)(log |  r | - log |  u | )

can be compared to a χ2 distribution with degrees of freedom 
equal to the number of restrictions.
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Model Selection Criteria

35

Alternative test criteria are the multivariate generalizations of 
the AIC and SBC:

AIC = T log |  |+ 2 N
SBC = T log |  | + N log(T)

Where |  | = determinant of the variance/covariance matrix of 
the residuals and N = total number of parameters estimated in 
all equations.
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Granger-Causality

36

Granger causality: If {yt} does not improve the forecasting 
performance of {zt}, then {yt} does not Granger-cause {zt}.  
The practical way to determine Granger causality is to 
consider whether the lags of one variable enter into the 
equation for another variable.
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Block Exogeneity

37

Block exogeneity restricts all lags of wt in the yt and zt equations 
to be equal to zero.  This cross-equation restriction is properly tested 
using the likelihood ratio test. Estimate the yt and zt equations using 
lagged values of {yt}, {zt}, and {wt} and calculate u.  Reestimate 
excluding the lagged values of {wt} and calculate r. Form the 
likelihood ratio statistic:

(T-c)(log | r | - log | u | 

This statistic has a chi-square distribution with degrees of freedom 
equal to 2p (since p lagged values of {wt} are excluded from each 
equation).  Here c = 3p + 1 since the unrestricted yt and zt equations 
contain p lags of {yt}, {zt}, and {wt) plus a constant.
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To Difference or Not to Difference

• Recall a key finding of Sims, Stock, and Watson (1990): 
If the coefficient of interest can be written as a coefficient on a 
stationary variable, then a t-test is appropriate.

• You can use t-tests or F-tests on the stationary variables.
• You can perform a lag length test on any variable or any set of 

variables
• Generally, you cannot use Granger causality tests concerning 

the effects of a nonstationary variable
• The issue of differencing is important. 

– If the VAR can be written entirely in first differences, 
hypothesis tests can be performed on any equation or any 
set of equations using t-tests or F-tests. 

– It is possible to write the VAR in first differences if the 
variables are I(1) and are not cointegrated. If the variables 
in question are cointegrated, the VAR cannot be written in 
first differences

38
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If the I(1) variables are not cointegrated and you use levels:

• Tests lose power because you estimate n2 more parameters 
(one extra lag of each variable in each equation).

• For a VAR in levels, tests for Granger causality conducted 
on the I(1) variables do not have a standard F distribution. 
If you use first differences, you can use the standard F
distribution to test for Granger causality.

• When the VAR has I(1) variables, the impulse responses at 
long forecast horizons are inconsistent estimates of the 
true responses. Since the impulse responses need not 
decay, any imprecision in the coefficient estimates will 
have a permanent effect on the impulse responses. If the 
VAR is estimated in first differences, the impulse 
responses decay to zero and so the estimated responses are 
consistent. 

39
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Seemingly Unrelated Regressions

40

Different lag lengths
yt = a11(1)yt-1 + a11(2)yt-2 + a12zt-1 + e1t
zt = a21yt-1 + a22zt-1 + e2t

Non-Causality
yt = a11yt-1 + e1t
zt = a21yt-1 + a22zt-1 + e2t

Effects of a third variable
yt = a11yt-1 + a12zt-1 + e1t
zt = a21yt-1 + a22zt-1 + a23wt + e2t
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Responses to

Figure 5.8 Impulse Responses of Terrorism
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Sims Bernamke
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Sims’ Structural VAR
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Sims (1986) used a six-variable VAR of quarterly data over the period 
1948Q1 to 1979Q3. The variables included in the study are real GNP (y), 
real business fixed investment (i), the GNP deflator (p), the money supply 
as measured by M1 (m), unemployment (u), and the treasury bill rate (r). 
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Note that it is Overidentified

44

rt = 71.20mt + ert (5.59)
mt = 0.283yt + 0.224pt – 0.0081rt + emt (5.60)
yt = –0.00135rt + 0.132it + eyt (5.61)
pt = –0.0010rt + 0.045yt – 0.00364it + ept (5.62)
ut =  –0.116rt – 20.1yt – 1.48it – 8.98pt + eut         (5.63)
it = eit (5.64)

Sims views (5.59) and (5.60) as money supply and demand functions, 
respectively. In (5.59), the money supply rises as the interest rate increases. The 
demand for money in (5.60) is positively related to income and the price level 
and negatively related to the interest rate. Investment innovations in (5.64) are 
completely autonomous. Otherwise, Sims sees no reason to restrict the other 
equations in any particular fashion. For simplicity, he chooses a Choleski-type 
block structure for GNP, the price level, and the unemployment rate. The 
impulse response functions appear to be consistent with the notion that money 
supply shocks affect prices, income, and the interest rate.
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Blanchard-Quah

45

Suppose we are interested in decomposing an I(1) 
sequence, say {yt}, into its temporary and permanent 
components. Let there be a second variable {zt} that is 
affected by the same two shocks. The BMA 
representation is:
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The Long-run resrtiction
• Assume that one of the shocks has a temporary effect on 

the {yt} sequence. 
– It is this dichotomy between temporary and permanent 

effects that allows for the complete identification of the 
structural innovations from an estimated VAR. 

• For example, Blanchard and Quah assume that an 
aggregate demand shock has no long-run effect on real 
GNP. In the long run, if real GNP is to be unaffected by the 
demand shock, it must be the case that the cumulated effect 
of an1t shock on the yt sequence must be equal to zero. 
Hence, the coefficients c11(k) must be such that

46
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11 1
0

( ) 0t k
k=

k =c 




11
0

( ) 0
k=

k =c




Since this must be true for all realizations

Recall that:

e1t = c11(0)e1t + c12(0)e2t 

e2t = c21(0)e1t + c22(0)e2t
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The four restrictions

• Restriction 1:
var(e1) = c11(0)2 + c12(0)2 

Restriction 2:
var(e2) = c21(0)2 + c22(0)2 

Restriction 3:
Ee1te2t = c11(0)c21(0) + c12(0)c22(0)

48
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Blanchard-Quah

49

Changes in 1t will have no long-run effect on the {yt} sequence if:
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Forecast Error Variance Due to Demand-side Shocks
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1                                      99.0 51.9
4 97.9 80.2

12 67.6 86.2
40 39.3 85.6
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Figure 5.9 Responses of Real and Nominal 
Exchange Rates 
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