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Abstract 
 

We estimate a number of macroeconomic variables as logistic smooth transition autoregressive 
(LSTAR) processes with uncertainty as the transition variable. Nonlinear estimation allows us to 
answer several interesting questions left unanswered by a linear model. For a number of 
important macroeconomic variables, we show (i) a positive shock to uncertainty has a greater 
effect than a negative shock, and (ii) the effect of the uncertainty shock is highly dependent on 
the state of the economy. Hence, the usual linear estimates concerning the consequences of 
uncertainty are underestimated in circumstances such as the recent financial crisis. 
 
 
 
Keywords: Nonlinear Models, STAR Models, Uncertainty Shocks, Generalized Impulse 
Responses 

 JEL Classifications: E32, E44, C32 

 

* The paper benefitted from helpful suggestions from Timo Teräsvirta and Robert Reed. 



2 
 

1. Introduction 

The large trough and subsequent, slow recovery from the Great Recession of 20082009 

has led to a renewed discussion concerning the effect of uncertainty on the macroeconomy. For 

example, Becker et al. (2010) report, “According to the Michigan Survey of Consumers, 37 

percent of households planned to postpone purchases because of uncertainty about jobs and 

income […and] recent capital expenditures and near-term plans for new capital investments 

remain stuck at 35-year lows.” Similarly, policy makers have emphasized the potential damaging 

effects of uncertainty. Consider the Federal Open Market Committee statement in April 2008: 

“Several [survey] participants reported that uncertainty about the economic outlook was leading 

firms to defer spending projects until prospects for economic activity became clearer.” 

Bernanke (1983) was one of the first to theorize that uncertainty shocks could potentially 

cause recessions by incentivizing firms to delay investment and employment decisions during 

times of high uncertainty. More recently, Bloom (2009) and Bloom et al. (2012) develop 

simulation models in which positive uncertainty shocks lead to temporary reductions in 

investment and employment. Similarly, Gilchrist, Sim, and Zakrajsek (2010) suggest uncertainty 

shocks raise the cost of capital leading firms to reduce investment. Panousi and Papanikolaou 

(2011) find that an increase in uncertainty raises managerial risk aversion, and DeMarzo and 

Sannikov (2006) find increases in uncertainty result in agency problems which reduce the value 

of employment. Finally, Baker et al. (2012) develop a policy-related uncertainty index and show 

that the increase in actual policy uncertainty between 2006 and 2011 could lead to as much as a 

3.2 percent decline in GDP.  

Unlike the aforementioned papers, we pursue Mishkin’s (2011) suggestion that the effect 

of uncertainty on output is not likely to be linear, especially in the presence of a financial 
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disruption. He argues that individuals tend to exaggerate the effects of worst-case scenarios and 

appear to be more risk-averse in downturns than in upturns. Moreover, as in Bloom (2009), 

Eisner and Strotz (1963), Lucas and Prescott (1971), and Lucas (1981), investment and 

employment decisions for an individual firm depend on adjustment costs. Relatively small 

changes in the level of uncertainty may not induce changes in the firm’s desired capital stock. 

However, in the face of a relatively large change in the level of uncertainty, firms are likely to 

alter their investment decisions as the costs of adjustment become small relative to the costs of 

inaction. Finally, it takes longer to expand capacity and hire labor than it takes to shut down 

capacity or lay off workers.1 Thus, we anticipate that uncertainty increases are transmitted to the 

economy faster than uncertainty decreases. The issue is important, because the aforementioned 

linear measures of the consequences of uncertainty are essentially averages across different states 

of the economy. We show that the macroeconomic consequences of uncertainty are especially 

large when uncertainty is already widespread as in the aftermath of the Great Recession.  

We estimate the effects of uncertainty on key macroeconomic variables using a nonlinear 

framework that allows the sign and magnitude of the uncertainty shocks to have asymmetric 

effects. Although the theory of the firm allowing for a fixed cost of adjustment indicates that 

investment acts as a threshold process, aggregating across all firms in the macroeconomy 

suggests that the region of inaction is actually a smooth process. To capture this type of behavior, 

we employ a LSTAR model consisting of a high-uncertainty and a low-uncertainty regime with a 

smooth transition between the two. We use our LSTAR model to examine the differential effects 

of positive and negative uncertainty shocks both before and during the recent financial crisis. 

Our LSTAR model can produce impulse response functions which answer three important 

                                                      
1 There is another strand of literature that looks at the idea of the irreversibility of investment. See, for example, 
Arrow (1968), Bertola and Caballero (1994), and Abel and Eberly (1994).  



4 
 

questions: do positive and negative uncertainty shocks have asymmetric effects, do the effects of 

uncertainty shocks vary over the business cycle, and do the effects of uncertainty shocks vary 

disproportionately with the size of the shock? 

In Section 2, we describe the data, present linear estimates of important macroeconomic 

variables, and pretest the data for nonlinearities. Section 3 presents our combination of an 

exponential generalized autoregressive conditional heteroskedastic (EGARCH) model with an 

LSTAR model in order to capture the types of nonlinearities likely to exist in the data. Section 4 

looks at historical decompositions, and Section 5 evaluates the asymmetric effects of uncertainty 

shocks on output both before and during the recent financial crisis using generalized impulse 

response functions. Our results show a positive shock to uncertainty is more persistent and has a 

greater effect than a negative shock to uncertainty. Also, the effect of the uncertainty shock is 

highly dependent on whether the shock occurs before or during the crisis. In Section 6, we show 

that the LSTAR specification also captures the responses of a number of other important 

macroeconomic variables to different measures of uncertainty. Specifically, industrial 

production, durable goods, employment, consumer credit, bank loans, and bank cash all display a 

greater response to positive uncertainty shocks than to negative uncertainty shocks. It is 

interesting that all but one of these variables decreases in response to uncertainty whereas banks 

increase their cash holdings as uncertainty rises. Section 7 concludes.  

2. Data and Pretesting for Nonlinearity 

2.1 Data 

 There is no consensus of the best measure of uncertainty, so our approach is to use 

different measures that have appeared in the academic literature. In Section 3, we follow Bloom 

(2009) and use the variance of the S&P 500 as our measure of uncertainty. In Section 6 we use 
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several alternative uncertainty measures. Bloom’s (2009) primary uncertainty measure is an 

indicator function that equals unity for seventeen important shocks and zero otherwise. 

Specifically, these seventeen shocks are events when the Hodrick-Prescott (HP) detrended 

volatility of the S&P 500 index rises 1.65 standard deviations above its HP mean.2 In a sense, 

this methodology allows only the large positive uncertainty shocks to have macroeconomic 

consequences. Instead, we estimate the S&P 500 index as a GARCH process and use the 

estimated conditional variance as our uncertainty measure. This allows all uncertainty shocks 

(regardless of sign and magnitude) to affect the macroeconomy. We also depart from using 

Bloom’s (2009) measure of output. He defines output as the HP detrended log of monthly 

industrial production.3 Instead, to avoid any controversy involved with the use of the HP filter, 

our output measure is the log difference of monthly industrial production.4 All of our data series 

were obtained from FREDII, and the transformations used for each are described in the 

Appendix.   

2.2 Pretesting for Nonlinearity 

 Before proceeding to estimate each series as a nonlinear process, it seems reasonable to 

pretest for nonlinearity in order to determine if each series displays some sort of nonlinear 

adjustment. Toward this end, we subject each series to a battery of tests for nonlinearity. Note 

that these tests can only suggest whether or not the data generating process is nonlinear and may 

not be able to pinpoint the proper form of nonlinearity. We employ the following diagnostic tests 

for nonlinearity: 

                                                      
2 As a robustness check, Bloom (2009) also uses the entire HP detrended volatility series, and the results are 
virtually unchanged with output declining quickly then overshooting.  
3 Using the HP filter can be problematic. Cogley and Nason (1995) show that the HP filter can generate business 
cycle dynamics even if none are present in the data. When the data is difference stationary, as in the volatility series 
of the S&P 500, the HP filter can amplify growth cycles at business cycle frequencies. Harvey and Jaeger (1993) 
also show that applying the HP filter can lead to spurious cyclical behavior.  
4 Nevertheless, using the HP filter on our data yields results that are not very different from those reported here. 
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Pretesting for STAR Models: Teräsvirta (1994) creates a framework to detect the presence of 

nonlinear behavior using a Taylor series expansion of the general STAR model. This is 

necessary since it is not possible to directly perform an LM test for the presence of STAR 

behavior. Consider the following simple LSTAR model: 

 0 1 1 0 1 1( )t t t ty y y                                (1) 

where  = [1 + exp((yt1  c))]1. 

 The null hypothesis in an LM test for nonlinearity (i.e., 0  ) suffers from the so-called  

Davies problem since 0, 1, and c are unidentified under the null of 0  . Instead, Teräsverta 

(1994) rewrites   as 

 1 1
1 1[1 exp( ( ))] [1 exp( )]t ty c g   
        ,  

so 1 1( )t tg y c   and takes a third-order Taylor series approximation of  to perform a general 

test for STAR behavior. The test involves multiplying the regressors in (1) by the approximation 

for  and then regressing all such terms on the residuals of the linear model. Hence, estimate 

 2
0 1 1 2 2 11 1 12 2 21 1 ...t t t t t d t t d t t da a y a y a y y a y y a y y                 . 

The test for nonlinearity entails the restriction that all values of aij = 0.  

Regression Error Specification Test (RESET): The Regression Error Specification Test 

cannot determine the specific form of nonlinearity but assumes the null hypothesis of linearity 

against a general alternative of nonlinearity. The residuals from a true linear model should not be 

correlated with the regressors used in the estimating equation or powers of the fitted values. 

Therefore, a regression of the residuals on powers, the fitted values, and the regressors should 

have little explanatory power if the model is linear. 
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Testing for Threshold Effects: Hansen (1997) develops a supremum test to check for threshold 

effects and shows how to obtain the appropriate critical values using a bootstrapping procedure. 

The procedure searches over all possible thresholds to find the best-fitting threshold model. If the 

F value exceeds the critical value from the bootstrapped F distribution, the null hypothesis of 

linearity is rejected. 

2.3 Nonlinear Test Results 

Table 1 reports the results from the three nonlinear tests for each of the macroeconomic 

variables used in our study.5 As shown in the table, when we applied Hansen’s bootstrap 

threshold test to industrial production, we obtained an F-statistic of 4.72 which is significant at 

better than the 95 percent level. Notice that each variable has at least two tests allowing us to 

reject the null hypothesis of linearity at better than the 90 percent confidence level. This suggests 

that nonlinear models are likely to capture the time series dynamics of these macroeconomic 

variables more accurately than linear models. However, the particular form of nonlinearity 

cannot be pinned down by the nonlinear tests. Section 3 discusses our particular nonlinear 

framework. 

2.4 Testing for EGARCH Behavior in Uncertainty  

Given that our macroeconomic variables should be modeled using a nonlinear 

framework, we proceed to test our uncertainty measure for nonlinearity. Engle and Ng (1993) 

develop a way to determine if positive and negative shocks have different effects on the 

conditional variance of a series. Let the model of the S&P 500 have the simple form:  

ln(xt) = c + 1t (2) 

                                                      
5 See Section 6 for a complete analysis of additional variables and the Data Appendix for the definitions for the 
variables.  
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where xt is the value of the S&P 500, c is a constant, 1t ~ N(0, ht), and ht is a GARCH(1,1) 

process such that the standardized residuals {st} can be written as 

1 / .t t ts h  

 Then let 1tD
  be a dummy variable equal to 1 if 1 1ˆ 0t    and equal to zero if 1 1ˆ 0t   . 

The sign bias test from Engle and Ng (1993) determines if the { 1tD
 } sequence can predict the 

estimated squared residuals. Not only can the sign of the shock affect the conditional variance 

asymmetrically, but also the size or magnitude of a shock can be asymmetric. To test for 

asymmetric size effects we conduct a negative (positive) size bias test by regressing 1ts   times 

1tD
  ( 1tD

 ) on the estimated squared residuals. 

Table 2 reports the results of Engle and Ng’s (1993) tests for asymmetry. The simple 

GARCH(1,1) model, shown in the first row of the table, is given by ht = 0.00009 + 

2
1 10.11 0.84t th   . We use the standardized residuals from this model to conduct the tests for 

asymmetry. A significant coefficient from the sign bias test indicates that positive and negative 

shocks have different impacts on the conditional variance. Moreover, coefficients from the 

positive and negative size bias tests are all significant at conventional levels. The 2-test for the 

combination of all three tests provides additional evidence supporting the use of an asymmetric 

EGARCH model. Note that the Akaike Information Criterion (AIC) and the Bayesian 

Information Criterion (BIC) from the EGARCH model are both smaller than those from the 

simple GARCH(1,1) model. Therefore, we estimate the following EGARCH(1,1) model as our 

measure of uncertainty: 

 1 1 1 1 1 1 1log 0.82 0.21 / 0.90log 0.11 / .t t t t t th h h h         
 (3)

 

             (3.02)  (3.48)        (23.15)   (4.21) 
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 The key feature of (3) is the negative coefficient on 1 1 1/t th   which guarantees negative 

shocks will produce higher variances than similarly sized positive shocks. Panel A of Figure 1 

shows the estimated conditional variance of the S&P 500 index obtained from equation (3) along 

with monthly U.S. industrial production. Recessions, as defined by the NBER, are represented by 

shaded areas in Figure 1. While it does appear that positive increases in uncertainty often 

accompany decreases in output, this is not always the case. The most obvious example is the lack 

of a significant drop in output following the increase in uncertainty associated with Black 

Monday, October 19, 1987. This suggests that the effects of an uncertainty shock may depend on 

the current state of the business cycle at the time of the uncertainty shock. 

 Our final pretest involves a slight modification to the Teräsverta (1994) procedure 

described above. In Section 3, we model industrial production as an LSTAR process with our 

measure of uncertainty, ht, as the transition variable. Thus, it is possible to test the null 

hypothesis of linearity directly against the alternative of an LSTAR model with ht as the 

transition variable. Consider the following LSTAR model: 

 0 1 1 0 1 1( )t t t ty y y                                (4) 

where  = [1 + exp((ht  c))]1 and ht is the measure of uncertainty from (3). Rewrite   as 

 1 1
1[1 exp( ( ))] [1 exp( )]t th c g   
       ,  

so 1 ( )t tg h c   and take a third-order Taylor series approximation of  to perform the test for 

STAR behavior. Our modified Teräsverta (1994) procedure involves multiplying the regressors 

in (4) by our new approximation for  and then regressing all such terms on the residuals of the 

linear model. The test for nonlinearity entails the restriction that all values of the Taylor series 

approximation are equal to zero. After carrying out this procedure, we obtain an F-statistic of 
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3.92 which is significant at better than the 99 percent level. Thus, we reject the null hypothesis of 

linearity and accept the alternative nonlinear model discussed more fully in Section 3. 

3. The Nonlinear Model of Industrial Production 

In this section, we follow Bloom (2009) and focus on the effect of uncertainty on 

industrial production. The other important macroeconomic variables listed in Table 1 are 

analyzed in Section 6. To begin Section 3, we compare a linear model of the industrial 

production series to our nonlinear specification. For the linear model, the BIC selects a model 

with two lags.6 Let ty denote the logarithmic change in monthly industrial production so that:  

1 2 20.0013 0.36 0.12t t t ty y y        (5) 

           (3.91)    (9.88)       (3.27) 

aic =    -2129.1    bic =    -2115.3 

where 2t denotes the error term for the {yt} process. 

The Ljung-Box Q-statistics indicate that the residuals are serially uncorrelated. For 

example, the Q-statistics using the first 4 and 8 lags of the standardized residual autocorrelations 

have prob-values of 0.21 and 0.25, respectively. The linear model represented by (5) indicates 

that the {yt} series is not especially persistent; the two characteristic roots are approximately 

0.21 and 0.57. More importantly, the model implies that adjustment is symmetric in the sense 

that mean reversion is invariant to the sign and magnitude of the discrepancy of yt from its mean. 

Hence, linearity implies that the phase of the business cycle is irrelevant.  

In order to allow uncertainty shocks to have differential effects on industrial production, 

we also estimate the {yt} series as an LSTAR process. The central feature of the LSTAR 

specification is the ability to model high and low uncertainty regimes with a smooth transition 

between the two. Moreover, the LSTAR model nests a threshold process; if, in equation (4),  is 
                                                      
6 We calculate the AIC and BIC as Tln(ssr) + 2r and Tln(ssr) + rln(T), respectively, where r is the number of 
estimated parameters and ssr is the sum of squared residuals.. 
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sufficiently large, the LSTAR and threshold specifications are essentially identical.  Consider the 

following LSTAR model of industrial production:7, 8 

1
1 1ˆ 0.003 0.28 ( 0.005 0.35 )[1 exp( 6.146( 2.155))]t t t ty y y h 
          (6) 

                (7.13)    (8.26)  (-5.97)    (5.61)  

 aic =    -2145.7   bic =    -2118.1             

where ˆty denotes the fitted values of the {yt} process.  

 Notice the transition variable in (6) is the contemporaneous value of uncertainty from (3) 

as opposed to the lagged value of industrial production. Also note, the AIC and BIC from the 

LSTAR model are both smaller than the AIC and BIC from the linear model even though the 

LSTAR model estimates three additional parameters. Panel B of Figure 1 shows the values of 

1[1 exp( 6.146( 2.155))]th      plotted as a function of ht. In comparing the two panels of 

Figure 1, note that c = 2.155 is close to the center of the estimated ht series and that the transition 

between regimes is reasonably sharp. 

 If you examine the skeleton of equation (6), it should be clear that when  = 0 (i.e., when 

uncertainty is low), the long-run equilibrium of output growth is positive, and the coefficient on 

1ty   is equal to 0.28. However, when  = 1 (i.e., uncertainty is high), the long-run equilibrium of 

output growth is negative, and the coefficient on 1ty   is 0.63 (i.e., 0.28 + 0.35 = 0.63). Therefore, 

high values of uncertainty decrease output and are more persistent than low values of 

uncertainty. 

4. Historical Decompositions 

                                                      
7 See Section 5.2 for analysis using a nonlinear VAR model and Section 6 for model estimates of other important 
macroeconomic measures and different measures of uncertainty. 
8 A t-test for γ is not reported since the parameters in the LSTAR model are undefined when γ = 0. Likewise, the 
variance is always positive. Therefore, a t-test for c = 0 is also not reported. 
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In order to highlight the effects of uncertainty on output, we perform two counterfactual 

analyses; one for the 2000:M1−2012:M1 period and the other for the 2009:M6−2012:M1 period. 

For the 2000:M1-2012:M1 period, we fix the value of uncertainty equal to the average value 

over the 1990s. Therefore, the ht series is set equal to 1.48 and 0.015   for each time period. 

Then, we set the initial condition for yt equal to the actual value of industrial production growth 

for 2000:M1 and iterate forward. Panel A of Figure 2 shows the recursive counterfactual values 

of industrial production compared to the actual values.9 Clearly, if the uncertainty values for the 

1990s had continued, we would have expected strong output growth. Specifically, the level of 

industrial production at the end of the twelve-year period is estimated to be almost 70 percent 

higher than the actual value.  

Panel B of Figure 2 shows the time series plot of actual and counterfactual industrial 

production for the second historical decomposition, 2009:M6-2012:M1. For this decomposition 

we set ht equal to the average value of uncertainty during the recent financial crisis (i.e., ht is 

fixed at 4.98 so that 1  ). Then we set the initial condition yt equal to the actual value for 

2009:M6 and iterate forward.  As shown in the figure, if the uncertainty level had remained 

constant at its average level for the financial crisis, output would have continued to decline 

sharply. Note that over the 2009:M6-2012:M1 period, counterfactual industrial production would 

have fallen by more than 20 percent as compared to the actual value.  

5. Impulse Response Functions 

Koop, Pesaran, and Potter (1996) develop a framework for estimating impulse responses 

from nonlinear models. Traditional impulse response functions have a symmetry property (e.g., a 

shock of −1 has exactly the opposite effect of a shock of +1) and a linearity property (e.g., a 

                                                      
9 Note that for our counterfactual analyses and generalized impulse responses we sum the changes in output growth 
in order to obtain the estimated levels of industrial production.  
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shock of size 2 has exactly twice the effect of a shock of size 1). However, the interpretation of 

impulse response functions for a nonlinear model is not as straightforward, since the initial state 

of the system, as well as the size, sign, and subsequent values of the shocks, affect the responses. 

To calculate generalized impulse responses, we specify the history of the system and the 

value of the uncertainty shock. Then, we select randomly drawn realizations of the residuals 

from (2) to produce 1 1 1 2 1 24, ,...,t t t    
   . Because the residuals may not have a normal distribution, 

we select the residuals using standard bootstrapping procedures. In particular, we draw with 

replacement the residuals from a uniform distribution and use these residuals to produce { *
th } =  

th  through 24th
 . These { *

th } values are substituted into the LSTAR model given by (6) to 

generate the recursive values of ty  through 24.ty
  For each particular history, we repeat the 

process 1000 times and obtain the mean values of the impulse responses along with the 95 

percent confidence intervals. 

5.1 Generalized Impulse Response Results 

Panel C of Figure 2 shows the impulse responses of a permanent positive and negative 

uncertainty shock on output. We initialize the model in period one by setting the magnitude of 

uncertainty equal to the centrality parameter c and the log difference of industrial production 

equal to its long-run equilibrium from the linear model, equation (5). Thus,  = ½ in period one 

before the uncertainty shocks and industrial production is equal to 0.013 / (1-0.36-0.12) = 

0.0025. Note that with the parameterization of the EGARCH model a negative innovation in the 

residuals leads to a higher conditional variance and is a positive uncertainty shock. The 

uncertainty shocks in Panel C of Figure 2 are permanent positive and negative one-standard-

deviation shocks from the residuals of (2). Hence, for a permanent positive (negative) 

uncertainty shock, the value of uncertainty in every period is determined by setting the residuals 
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1 1 1 2 1 12, ,...,t t t    
    equal to a minus (plus) one-standard-deviation innovation in the residuals of 

(2). As shown by the reflection of the permanent positive uncertainty shock in Panel C of Figure 

2, increases in uncertainty have larger effects on output than decreases in uncertainty. 

Specifically, industrial production falls from 0.0025 to 0.0054 for the permanent positive 

uncertainty shock and rises only from 0.0025 to 0.00417 for the permanent negative uncertainty 

shock.10 Also, consistent with our historical decompositions, permanent high values of 

uncertainty lead to permanent decreases in output, and permanent low values of uncertainty lead 

to permanent increases in output. 

Panel A of Figure 3 shows the effects of a temporary positive, one-standard-deviation 

shock to uncertainty during the recent financial crisis. Unlike the procedures used to produce 

Figure 2, here we change only the value of *
1t for 2008:12 and select the subsequent residuals 

using standard bootstrapping procedures. We repeat this procedure 1000 times. The figure shows 

the mean values of industrial production along with 95 percent confidence intervals. Initially, a 

positive one-standard-deviation uncertainty shock causes industrial production to fall. The series 

returns to its original value in little more than a year.  

Panel B of Figure 3 shows how an actual uncertainty shock from the midst of the 

financial crisis (2008:12) would have affected output if it had occurred in 2008:1 (i.e., before the 

onset of the crisis). The actual magnitude of the shock is more than twice that used in Panel A of 

Figure 3. Nevertheless, the effect of the shock on output is small; output continues to rise in spite 

of the shock. While the 2008:12 uncertainty shock actually had a large negative effect on output 

for that period, our counterfactual analysis shows that it would have little effect if it had occurred 

                                                      
10 Table 3 reports these same results in a different manner. 0.0025 is the long-run equilibrium from the linear model 
of industrial production, -0.0054 is the high uncertainty regime equilibrium, and 0.00417 is the low uncertainty 
regime equilibrium. 
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when the economy was strong. The key point is that this hypothetical increase in uncertainty 

occurs when the state of the economy is strong. Therefore, uncertainty shocks occurring during 

deep recessions such as the recent financial crisis have vastly different effects than the same 

sized shocks occurring during expansions.  

One interesting feature of the LSTAR model is that the consequence of uncertainty 

shocks need not be homogeneous of degree one in the size of the shock. In Panel A of Figure 4, 

we investigate how different sized shocks affect industrial production were they all to occur in 

2008:12. The solid, dotted, and dashed lines show bootstrapped mean values of +2, +1, and 1-

standard-deviation temporary shocks on industrial production, respectively.  Notice that the 

uncertainty shocks affect industrial production negatively in each case even when the shock is 

negative. However, positive uncertainty shocks lead to larger decreases in output and longer 

recovery times than negative uncertainty shocks. Following a negative one-standard-deviation 

uncertainty shock, output returns to pre-shock levels after approximately 12 months. After a 

positive one-standard-deviation shock, output recovers after approximately 18 months, and after 

a positive two-standard-deviation shock, output returns to pre-shock levels in approximately 24 

months. 

Panel B of Figure 4 shows the results of repeating the exercise assuming that the same 

sized shocks occurred on 2008:1. In this case, the temporary uncertainty shocks barely affect 

output. Even large positive uncertainty shocks do not affect output substantially. The point is that 

reasonably sized uncertainty shocks—even as much as two-standard-deviations—occurring 

during a favorable state of economic activity have little effect.   

5.2 An Alternative Methodology 
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 An alternative methodology to estimate the nonlinear effects of uncertainty on output is 

to estimate the growth rate of industrial production (i.e., yt) and uncertainty as a simultaneous 

system. Since the conditional variance of the S&P 500 is not directly observable, we use implied 

volatility based on the Chicago Board of Options Exchange VXO index as our measure of 

uncertainty. This index is available from 1986 onward. Using this methodology we are able to 

shed light on the following question of causality: Does an increase in uncertainty cause output to 

drop or does a decrease in output cause uncertainty to increase? We continue to estimate yt as an 

LSTAR process and estimate the VXO as an equation in a vector autoregression (VAR). 

Consider the following estimation: 

 1
1 1 1 30.0033 0.15 ( 0.0039 0.76 )[1 exp( 4.36( 23.23))] .t t t t ty y y vxo 
            

        (6.93)   (-1.80)      (-5.20)     (6.62)    

1 1 43.55 0.83 30.45 .t t t tvxo vxo y       
         (4.54)   (25.24)    (0.70) 

All of the estimates in the nonlinear system are obtained simultaneously using nonlinear least 

squares. Once again, the transition variable in the LSTAR model of output is the lagged value of 

the VXO index as opposed to lagged values of output. Notice in the equation for uncertainty the 

coefficient on output is insignificant. In a sense the t-statistic in this case acts like a Granger 

causality test. Thus, an insignificant coefficient suggests that output is not driving uncertainty, 

but in fact changes in uncertainty are causing changes in output. 

Figure 5 plots the values of  against our uncertainty measure where 

1
1[1 exp( 4.36( 23.23))] .tvxo 
     The figure shows high values of uncertainty produce   

values equal to one, low values of uncertainty produce   values equal to zero, and intermediate 

values of uncertainty produce   values between zero and one. When  = 0 and uncertainty is 
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low, the long-run equilibrium of output is positive, and the coefficient on 1ty   is equal to -0.15. 

However, when  = 1 and uncertainty is high, the long-run equilibrium of output is negative, and 

the coefficient on 1ty   is 0.61. Therefore, consistent with our two-step estimation, high values of 

uncertainty decrease output and are more persistent than low values of uncertainty. 

6. Alternative Measures of Uncertainty and Other Important Macroeconomic Variables 

 To determine whether uncertainty shocks induce asymmetric responses in other sectors, 

we investigate the effects of uncertainty on a number of other important macroeconomic 

variables. Moreover, to ensure that the results are robust, we examine the effects of several 

uncertainty measures. The results are presented in Table 4. In each case, uncertainty is the 

transition variable in the most appropriate LSTAR model for each sector. As should be clear 

from (1), 0  is a measure of the effect of high values of uncertainty on each of the 

macroeconomic variables. Interestingly, all of the coefficient estimates of 0  are negative except 

for the last regression. This means that high values of uncertainty cause a drop in every 

important macroeconomic variable except bank cash which increases during times of high 

uncertainty. In other words, an increase in uncertainty decreases production and financial flows, 

but increases the amount of cash that banks choose to hold. This also provides evidence for the 

direction of causality between uncertainty and output. If the change in output is causing 

uncertainty to change, it is unlikely that uncertainty would affect each production and financial 

flow variable similarly. 

 Since the value of 1 can also affect the long-run equilibrium, Table 3 examines the 

skeleton of each model to determine the long-run equilibrium for each regime. The high 

uncertainty regime equilibrium is calculated by setting  = 1 and the low uncertainty regime 
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equilibrium is found by setting  = 0 in each of the LSTAR models reported in Table 4. For 

example, the last column of Table 4 reports estimates for the LSTAR model of bank cash with 

the spread between the 30-year corporate junk bond and the 30-year treasury bond as the 

measure of uncertainty. When  = 1, the sum of the intercept terms equals 0.004+0.04 = 0.044, 

and the sum of the autoregressive coefficients equals -0.007+0.62 = 0.613. Therefore, the high 

uncertainty regime equilibrium is 0.044 / (1-0.613) = 0.1137. The difference between the high 

uncertainty regime equilibrium and the long-run equilibrium from the linear model is 0.1137 - 

0.00632 = 0.10738. Notice that the absolute values of the difference between the high 

uncertainty regime equilibrium and the long-run equilibrium from the linear model are greater 

than the differences between the low uncertainty regime and the long-run equilibrium in every 

case except one. The exception is when our uncertainty measure is Business Outlook Survey 

(BOS) data and our macroeconomic variable is consumer credit. Often the effects of positive 

uncertainty shocks are several times larger than negative uncertainty shocks.11 Therefore, we 

conclude that positive uncertainty shocks have larger effects than negative uncertainty shocks 

across a number of important macroeconomic variables and various measures of uncertainty. 

6.1 – The Asymmetric Effects of Uncertainty on Consumer Credit 

 Given the recent claims that banks have been hoarding cash and frustrating the Federal 

Reserve’s efforts to lower interest rates, we examine the effects of uncertainty shocks on 

consumer credit in more detail. Specifically, we look at how the conditional variance of the S&P 

500 index affects consumer credit. The best-fitting model of consumer credit is:  

 1
1 1ˆ 0.0031 0.61 ( 0.0026 0.08 )[1 exp( 3.23( 2.103))]t t t ty y y h 
          (6) 

        (6.66)    (20.87)      (-3.52)    (1.02)            

                                                      
11 This can be seen graphically in Figure 2 Panel C and Figure 7 Panel C.  
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where yt denotes the growth rate of consumer credit.  

Panel A of Figure 6 shows monthly U.S. consumer credit along with the conditional 

variance of the S&P 500 index estimated by an EGARCH(1,1) model. Recessions, as defined by 

the NBER, are represented by shaded areas of the figure. On inspection, consumer credit growth 

seems to decline with the onset of a recession. In Panel B of Figure 6, we show the values of 

against the estimated values of ht. The centrality parameter c = 2.103 is near the center of the 

estimated ht series shown in Panel A. When uncertainty is low (i.e.,  is close to zero), the 

skeleton of (6) indicates that the long−run equilibrium value of consumer credit is 0.00795 = 

0.0031/(1 – 0.61). However, when uncertainty is high (i.e.,  is close to unity), the long-run 

equilibrium of consumer credit is only 0.00161 = (0.0031− 0.0026)/(1− 0. 61 – 0.08). Therefore, 

consumer credit slows considerably during times of high uncertainty.  

6.2 – Historical Decomposition 

 We perform two counterfactual analyses to show the effects of uncertainty on consumer 

credit; one for 2000:M1−2012:M1 and the other for 2010:M6−2012:M6. The historical 

decomposition for 2000:M1 − 2012:M1 is shown in Panel A of Figure 7.  Similar to our 

aforementioned historical decompositions, during this first period we set the value of uncertainty 

equal to its average value of for the 1990s (i.e., ht = 1.48 and 0.015   in each time period). 

Then we set the initial condition for yt equal to the actual value of consumer credit growth for 

2000:M1 and iterate forward. Panel A of Figure 7 shows the recursive counterfactual values of 

consumer credit compared to the actual values. Clearly, if the average level of uncertainty values 

for the 1990s had continued, we would have expected strong growth in consumer credit. 

Specifically, the level of consumer credit at the end of the twelve-year period is estimated to be 

almost 90 percent higher than the actual value. 
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 Panel B of Figure 7 shows the time series plot of consumer credit for the second 

historical decomposition, 2010:M6-2012:M6. We set the value of uncertainty equal to its average 

during the recent financial crisis (i.e., ht is fixed at 4.98 so that 1  ). Then we set the initial 

condition yt equal to the actual value for 2010:M6 and iterate forward.  As shown in Figure 7, if 

the uncertainty level had remained constant at its average level for the financial crisis, consumer 

credit would have grown at a slower rate. Note that over the two year period counterfactual 

consumer credit would have been approximately 5 percent lower than actual consumer credit. 

The fact that the differential between the actual and counterfactual values is relatively small 

compared to other sectors reflects the tendency of banks to hoard cash. As shown in the last 

column of Table 4, high uncertainty increases the intercept of bank cash holdings from 0.004 to 

0.044 and the persistence parameter from 0.007 to 0.613. Therefore, even in the absence of 

additional positive uncertainty shocks, the increase in the persistence parameter means banks 

continue to hoard cash and restrict the amount of consumer credit. 

6.3 – Generalized Impulse Responses 

Panel C of Figure 7 shows the impulse responses of a permanent positive and a 

permanent negative uncertainty shock on consumer credit. We initialize the model in period one 

by setting the magnitude of uncertainty equal to the centrality parameter c and the log difference 

of consumer credit equal to its long-run equilibrium from the linear model [i.e., row 4 in Table 

3]. Thus,  = ½ in period one before the uncertainty shocks and consumer credit is equal to 

0.00633. For a permanent positive (negative) uncertainty shock, the value of uncertainty in every 

period is determined by setting the residuals 1 1 1 2 1 12, ,...,t t t    
    equal to a minus (plus) one-

standard-deviation innovation of the residuals in (2). As illustrated by the reflection of the 

permanent positive uncertainty shock shown in Panel C of Figure 7, increases in uncertainty 
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have larger effects on consumer credit than decreases in uncertainty. Specifically, consumer 

credit falls from 0.00633 to 0.0016 for the permanent positive uncertainty shock and rises only 

from 0.0063 to 0.00795 for the permanent negative uncertainty shock. 

We investigate how different sized shocks affect consumer credit were they all to occur 

in 2008:12. In Panel A of Figure 8, the solid, dotted, and dashed lines show bootstrapped mean 

values of +2, +1, and 1-standard-deviation temporary shocks on consumer credit, respectively.  

Notice that in each case the uncertainty shocks slow consumer credit for the first three months 

after the shock. Moreover, changing the magnitude of the shock has a non-proportional effect on 

consumer credit. Although the differential between a +1 and a 1 standard deviation shock is 

twice that of a +1 to +2 standard deviation shock, the magnitude of the effects on consumer 

credit is about the same.  

Panel B of Figure 8 repeats the exercise assuming that shocks of the same size occurred 

on 2008:1. In this case, the temporary uncertainty shocks barely affect consumer credit. Even 

large positive uncertainty shocks do not affect consumer credit substantially. The key point is 

that the timing of temporary uncertainty shocks matters more than the magnitude of temporary 

uncertainty shocks. 

7. Conclusion 

We contribute to the growing literature on uncertainty by investigating the asymmetric 

effects of uncertainty on macroeconomic activity before and during the recent financial crisis. 

Instead of estimating a conventional linear model, we estimate uncertainty using an EGARCH 

model to allow positive and negative shocks to have asymmetric effects, and we estimate output 

using an LSTAR model. We show that increases in uncertainty have greater effects than 

decreases in uncertainty on a number of important macroeconomic variables. These results are 
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robust to several measures of uncertainty and important macroeconomic variables. We also 

provide two potential answers to the question of the direction of causality. First, we develop a 

nonlinear VAR model and show that the coefficient on output is insignificant in the equation for 

uncertainty. Second, uncertainty is shown to affect many different sectors of the economy which 

is unlikely to be the case if output is truly causing the changes in uncertainty. 

 Since linear models are essentially averages across the two types of shocks, they 

underestimate the economic effects of increases in the level of uncertainty. Moreover, the timing 

of the shocks is also crucial because uncertainty shocks that occur during severe recessions are 

likely to have much more profound effects than shocks of similar size occurring during 

expansions. Our findings suggest policy makers should be especially concerned about 

minimizing the level of uncertainty during downturns such as the recent financial crisis.  

Although we find unidirectional causality between uncertainty and the key 

macroeconomic variables, there may be unobservable business cycle phenomena that 

simultaneously affect both uncertainty and the macroeconomic variables. Nevertheless, the 

asymmetric pattern we find is consistent across industrial production, durable good production, 

employment, consumer credit, bank loans and bank cash.  
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Data Appendix 
In this appendix, we describe the data for our measures of uncertainty and macroeconomic 
variables. 
 
A.1 – Output Data 
We use three different measures of output and three financial measures to investigate the effects 
of uncertainty. All of the measures come from the Federal Reserve Economic Database (FRED). 
All variables are found to be difference stationary and  
 
Industrial Production 
Industrial production is the log difference of monthly industrial production from 1950:1-2012:1. 
 
Durable Goods 
Durable goods is the log difference in monthly durable consumer goods taken from industrial 
production from 1950:1-2012:1. 
 
Employment 
Employment is the log difference in monthly total nonfarm employees from 1950:1-2012:1. 
 
Consumer Credit 
Consumer credit is the log difference in total monthly consumer credit owned and securitized, 
outstanding from 1950:1-2012:1. 
 
Bank Loans 
Bank loans is the log difference in commercial and industrial loans at all commercial banks from 
1950:1-2012:1. 
 
Bank Cash 
Bank cash is the log difference in cash assets at all commercial banks from 1973:1-2012:1. 
 
A.2 – Uncertainty Data 

We use the following four variables as our measures of uncertainty. 

Conditional Variance of the S&P 500 

We use an EGARCH(1,1) model as our estimate of the conditional variance of the S&P 500. 

Interest Rate Spread 

 For our second measure of uncertainty we follow Gilchrist, Sim, and Zakrajsek (2009) and use 
the spread between the 30-year Baa corporate bond and the 30-year Treasury bond. If the 30-year 
bond is not available, we use the 20-year bond. 

Business Outlook Survey 

Our next measure comes from Bachmann, Elstner, and Sims (2013). It quantifies disagreements 
in The Philadelphia FED District Business Outlook Survey (BOS). In particular, we use the 
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response of manufacturing firms to the following question from the survey: “What is your 
evaluation of the level of general business activity six months from now vs. current month: 
decrease, no change, increase?” We subsequently calculate uncertainty using the following 
formula: 

௧ݕݐ݊݅ܽݐݎ݁ܿ݊ݑ	 ൌ ሻ݁ݏܽ݁ݎ௧ሺ݅݊ܿܿܽݎܨሺݐݎݍݏ ൅ ሻ݁ݏܽ݁ݎ௧ሺ݀݁ܿܿܽݎܨ െ	 
																							ሺܿܽݎܨ௧ሺ݅݊ܿ݁ݏܽ݁ݎሻ െ	ܿܽݎܨ௧ሺ݀݁ܿ݁ݏܽ݁ݎሻሻଶ	ሻ

		  
 

where Fractt(increase) is the fraction of individuals that believe that business conditions six 
months from time t will increase, and Fractt(decrease) is defined similarly. 
 
Uncertainty Index 

Our final measure of uncertainty is the monthly, policy-related uncertainty index by Baker et al. 
(2012) which spans January 1985 to January 2012 and combines three index components. The 
first quantifies the number of references to policy-related uncertainty in ten leading newspapers. 
The next component is the number of federal tax code provisions set to expire in future years, 
and the final is the extent of disagreement between economic forecasters over future federal 
government purchases and consumer price index (CPI) levels. 
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Table 1 Nonlinearity Tests 
 

Nonlinear Tests1  Industrial 
Production 

Durable 
Goods  Employment  Consumer 

Credit  Bank Loans  Bank Cash 

Teräsvirta (1994)  2.52**  18.72***  6.30***  0.85  2.93***  8.56*** 

RESET  2.15*  18.72***  0.91  2.08*  3.37**  14.09*** 

Test of Threshold Effect  4.72**  15.10***  12.53***  12.03***  5.32***  5.18*** 

 
 
 
 

Note: The table reports F-statistics for each of the above nonlinear tests. 
* Denotes statistical significance at the 90% level. 
** Denotes statistical significance at the 95% level. 
*** Denotes statistical significance at the 99% level. 
1Under the null hypothesis, each process is linear. 
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Table 2 – Testing for EGARCH Behavior in Uncertainty 

 
GARCH(1,1) Model 

 
2

1 10.00009 0.11 0.84t t th h      

  (2.86) (4.55) (29.98) 

 aic =  -2642.18  bic =   -2623.74 

Engle and Ng (1993) Tests  
  

Sign Bias Test 2
10.71 0.61t t ts D v
    

  (7.16) (4.22) 

  
Negative Size Bias Test 2

1 10.91 0.23t t t ts D s v
     

  (10.65) (-2.10) 

  
Positive Size Bias Test 2

1 11.20 0.55t t t ts D s v
     

  (13.45) (-3.93) 

  
All Three Tests 2

1 1 1 1 10.91 0.51 0.11 0.28t t t t t t ts D D s D s v  
        

  (5.44) (2.20) (0.75) (-1.46) 

  Chi-Squared (3) = 20.09 with significance level 0.00016 

  
EGARCH (1,1) Model 1 1 1 1 1log 0.82 0.21 / 0.90 log 0.11 / .t t t t t th h h h         

  (-3.02) (3.48) (23.15) (-4.21) 

 aic =  -2658.68  bic =  -2635.62 

  
 

  



29 
 

Table 3 – Long-run Equilibrium for Positive and Negative Shocks 

 

Lags 
Long-run 

Equilibrium

High 
Uncertainty 

Regime 
Equilibrium 

Low 
Uncertainty 

Regime 
Equilibrium 

Difference 
Between High 
and Long-run 
Equilibrium 

Difference 
Between Low 
and Long-run 
Equilibrium 

       
Linear Models       

Industrial Production 2 0.0025     
Durable Goods 1 0.00266     
Employment 3 0.0014     
Consumer Credit 3 0.00633     
Bank Loans 5 0.0062     
Bank Cash 1 0.00632     

       
LSTAR Models       

S&P Var - Ind. Prod.   -0.0054 0.00417 -0.0079 0.00167 
S&P Var - CC   0.0016 0.00795 -0.00473 0.00162 
S&P Var - Emp.   0.00 0.0021 -0.0014 0.0007 
BOS - Ind. Prod.   -0.0015 0.0043 -0.004 0.0018 
BOS - Durables   -0.0187 0.0087 -0.02136 0.00604 
BOS - CC   0.0054 0.0075 -0.00093 0.00117 
Index - Ind. Prod.   0.00 0.0028 -0.0025 0.0003 
Index - Loans   0.00 0.0083 -0.0062 0.0021 
Index - CC   0.00105 0.0072 -0.00528 0.00087 
Int. Spread - Cash   0.1137 0.00397 0.10738 -0.00235 
Note: The number of lags for the linear models is selected by minimizing the BIC. Each of the 
equilibriums for the LSTAR models are obtained from the coefficient estimates in Table 4. The 
numbers in bold indicate whether the absolute value of the difference between the high 
uncertainty equilibrium and long-run equilibrium or the difference between the low uncertainty 
equilibrium and the long-run equilibrium is greater. 
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Table 4 – Alternate Measures of Uncertainty and Other Important Macroeconomic Variables 

 

Uncertainty 
Measure 

S&P 500 
Variance 

S&P 500 
Variance 

S&P 500 
Variance 

BOS 
Data 

BOS 
Data 

BOS 
Data 

Uncertainty 
Index 

Uncertainty 
Index 

Uncertainty 
Index 

Interest Rate 
Spread 

Economic 
Activity Measure 

Industrial 
Production 

Consumer 
Credit 

Employment 
Industrial 

Production 
Durable 
Goods 

Consumer 
Credit 

Industrial 
Production 

Bank 
Loans 

Consumer 
Credit 

Bank Cash 

α0 0.003*** 0.0031*** 0.0016*** 0.003*** 0.008*** 0.0059*** 0.003*** 0.001 0.0015*** 0.004** 

α1 0.28*** 0.61*** 0.25*** 0.31*** 0.08 0.195* -0.07 0.88*** 0.71*** -0.007 

β0 -0.005*** -0.0026** -0.0016*** -0.004** -0.028 -0.0044*** -0.003*** -0.001 -0.0011 0.04* 

β1 0.35*** 0.08 0.55*** 0.03 -0.15 0.53*** 0.45*** -0.26 -0.09 0.62*** 

γ 1 5889 3097 606899 38.6 14.6 2620 13.04 19.35 10.38 8.17 

c 2 0.00225 0.0022 0.0018 0.736 0.8 0.515 115 156 152 3.96 

 

 

 

 

1
0 1 1 0 1 1( )[1 exp( ( ))] .t t t t ty y y u c     

        

Note: The table reports estimates for each parameter in the LSTAR model. 
* Denotes statistical significance at the 90% level. 
** Denotes statistical significance at the 95% level. 
*** Denotes statistical significance at the 99% level. 
1The parameters are undefined when γ = 0. Therefore, significance levels for the null hypothesis γ = 0 are not reported. 
2Also significance levels for c = 0 are not reported since our uncertainty variables are always positive. 
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Figure 1 - Uncertainty and Industrial Production 
Panel A: Conditional variance of the S&P 500 along with monthly U.S. industrial production 

 
Panel B: Values of theta in the LSTAR model 

 
Note: Figure 1 shows the conditional variance estimated by an EGARCH(1,1) model normalized by 
dividing by the standard deviation of the series. Panel B shows values of theta in the LSTAR model 

where 1[1 exp( 6.146( 2.155))] .th      
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Figure 2 – Historical Decompositions and Permanent Uncertainty Shocks 
Panel A: Decomposition if uncertainty equals its average value during the 1990s 

  
Panel B: Decomposition if uncertainty equals its average value during the financial crisis 

 
Panel C: Effects of permanent shocks to uncertainty 

 
Note: Figure 2 Panel C shows the asymmetric effects of a permanent positive and a permanent negative 
uncertainty shock. The reflection of the positive shock shows that positive shocks have greater effects 
than negative shocks. 
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Figure 3 – Impulse Responses to a Temporary Positive Uncertainty Shock 

Panel A: Impulse response to a positive one-standard-deviation uncertainty shock occurring in 2008:12 

 
Panel B: Impulse response to a 2008:12 uncertainty shock occurring in 2008:1 
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Figure 4 – The Asymmetric Effects of Temporary Uncertainty Shocks 
Panel A: Impulse responses to uncertainty shocks during the financial crisis (2008:12) 

 
Panel B: Impulse responses to uncertainty shocks before the financial crisis (2008:1) 

Note: Figure 4 shows the impulse responses to a temporary positive one-standard-deviation uncertainty 
shock, a temporary positive two-standard-deviation uncertainty shock, and a temporary negative one-
standard-deviation uncertainty shock before and during the financial crisis. All lines show mean estimates 
of each impulse response. 
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Figure 5 – Values of Theta in the Nonlinear VAR Model 

 
Note: The uncertainty measure in the nonlinear VAR is the implied volatility based on the Chicago 
Board of Options Exchange VXO index. The value of theta in the LSTAR model is defined as 

1
1[1 exp( 4.36( 23.23))] .tvxo 
     
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Figure 6 – Uncertainty and Consumer Credit 
Panel A: Conditional variance of the S&P 500 and monthly U.S. consumer credit 

 
Panel B: Values of theta in the LSTAR model 

 
Note: Figure 6 shows the conditional variance estimated by an EGARCH(1,1) model normalized by 
dividing by the standard deviation of the series. Panel B shows values of theta in the LSTAR model 

where 1[1 exp( 3.23( 2.103))] .th      

 
  



37 
 

Figure 7 – Historical Decompositions and Permanent Uncertainty Shocks 
Panel A: Decomposition if uncertainty equals its average value during the 1990s 

 
Panel B: Decomposition if uncertainty equals its average value during the financial crisis 

 
Panel C: Effects of permanent shocks to uncertainty 

 
Note: Panel C shows the asymmetric effects of a permanent positive and negative uncertainty shock. The 
reflection of the positive shock shows that positive shocks have greater effects than negative shocks.
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Figure 8 – The Assymetric Effects of Temporary Uncertainty Shocks 
Panel A: Impulse responses to uncertainty shocks during the financial crisis (2008:12) 

 
Panel B: Impulse responses to uncertainty shocks before the financial crisis (2008:1) 

 
Note: Figure 8 shows the impulse responses to a temporary positive one-standard-deviation uncertainty 
shock, a temporary positive two-standard-deviation uncertainty shock, and a temporary negative one-
standard-deviation uncertainty shock before and during the financial crisis. All lines show mean estimates 
of each impulse response.  


