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This article develops critical values to test the null hypothesis of a unit root against the alternative
of stationarity with asymmetric adjustment. Specific attention is paid to threshold and momentum
threshold autoregressive processes. The standard Dickey—Fuller tests emerge as a special case.
Within a reasonable range of adjustment parameters, the power of the new tests is shown to be
greater than that of the corresponding Dickey—Fuller test. The use of the tests is illustrated using
the term structure of interest rates. It is shown that the movements toward the long-run equilibrium
relationship are best estimated as an asymmetric process.
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It is widely acknowledged that many important economic
variables display asymmetric adjustment paths. The obser-
vation that firms are more apt to raise than to lower prices is
a key feature of many macroeconomic models. There is also
a sizable literature concerning the asymmetric adjustment
of real variables. Neftci (1984) began an important debate
by showing that several measures of U.S. unemployment
display asymmetric adjustment over the course of the busi-
ness cycle. Falk (1986) found little evidence in favor of
asymmetry when he applied Neftci’s method to real U.S.
gross national product (GNP), investment, and productivity
and to industrial production in Canada, France, Italy, Ger-
many, and the United Kingdom. Nevertheless, the recent
consensus seems to be in favor of asymmetric adjustment.
Terasvirta and Anderson (1992) found that industrial pro-
duction in 13 countries responds more sharply to negative
shocks than to positive shocks. Similarly, Granger and Lee
(1989) found that U.S. sales, production, and inventories
display asymmetric adjustment toward their long-run equi-
librium relationship. Potter (1995) modeled changes in real
U.S. GNP as a threshold adjustment process, and Balke and
Fomby (1996) showed that various short-term interest rates
exhibit threshold cointegration.

In fact, the focus of the debate seems to have changed.
Instead of trying to determine whether or not there is asym-
metry, recent works attempt to ascertain the specific type of
asymmetry. For example, Sichel (1993) discussed the dis-
tinction between “sharp” versus “deep” cycles. Sharpness
occurs when contractions are steeper than expansions and
deepness occurs when troughs are more pronounced than
peaks. He found that U.S. unemployment, industrial pro-
duction, and GNP display evidence in favor of deepness
but that only unemployment displays evidence of sharp-
ness. Ramsey and Rothman (1996) found both steepness

and deepness in several of the Nelson and Plosser (1982)
data series.

In spite of the interest in asymmetric adjustment models,
standard unit-root tests assume a symmetric adjustment pro-
cess. One aim of this article is to describe a class of models
that can be used as the basis of unit-root tests in the pres-
ence of asymmetric adjustment. In particular, the threshold
autoregressive (TAR) model developed by Tong (1983) al-
lows the degree of autoregressive decay to depend on the
state of the variable of interest. Such a model can capture
the key aspects of any “deep” movements in a series. If
autoregressive decay is fast when the variable is above trend
and slow when the variable is below trend, troughs will be
more persistent than peaks. A second aim of the article is
to introduce the momentum threshold autoregressive (M-
TAR) model. The M-TAR model allows a variable to dis-
play differing amounts of autoregressive decay depending
on whether it is increasing or decreasing. The momentum
model can capture the possibility of asymmetrically “sharp”
movements in a series. The TAR and M-TAR models are
described in Section 1. Section 2 contains the critical values
that can be used to test the null hypothesis of a unit root
against an alternative of stationarity with asymmetric ad-
justment. The power of the test for simple TAR adjustment
is low relative to that of the usual Dickey—Fuller test. The
power of the test is increased, however, in a multithreshold
setting. Within a range of adjustment parameters relevant
to many economic time series, the power of the test for M-
TAR adjustment can be substantially greater than that of the
corresponding Dickey-Fuller test. In Section 3 the asym-
metric adjustment tests are used to analyze the relationship
between long-term and short-term interest rates. The tests
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are used to reconfirm the well-established result that the
interest-rate differential is stationary. It is shown, however,
that the movements toward the equilibrium relationship are
asymmetric in a way characterized by M-TAR adjustment.
The result is supported by the estimations of the implied
error-correction model. Section 4 contains some conclud-
ing remarks and a discussion of an important limitation of
the testing procedure.

1. THRESHOLD AND MOMENTUM
THRESHOLD MODELS

Standard time series models assume linearity and sym-
metric adjustment. Consider the simple linear relationship
used as the basis for the Dickey-Fuller test:

Ayy = pyp—1 + &4, (1)

where &; is a white-noise disturbance.

The standard procedure is to estimate p and to ascertain
whether —2 < p < 0 using the appropriate critical values.
Equation (1) can be modified in many different ways includ-
ing the introduction of deterministic regressors, the addition
of lagged changes in Ay;, allowing for structural breaks,
and allowing {&;} to be weakly dependent and heteroge-
neously distributed. Notice that the alternative hypothesis
entails a symmetric adjustment process around y, = 0. For-
mally, the homogeneous portion of (1) can be written as a
first-order linear difference equation with constant coeffi-
cients. Convergence is assured if —2 < p < 0 because the
homogeneous solution to (1) is y; = A(1 + p)t, where A is
an arbitrary constant.

The Dickey-Fuller test and its extensions are misspeci-
fied if adjustment is asymmetric, however. Consider an al-
ternative specification—called the threshold autoregressive
(TAR) model—such that

g ifyp_1 >
Ayt:{plyt—1+ ¢ fy1 20

poyr—1 +g¢ i gy <O

A sufficient condition for the stationarity of {y;} is —2 <
(p1, p2) < 0. Moreover, if the sequence is stationary, Tong
(1983) proved that the least squares estimates of p; and p»
have an asymptotic multivariate normal distribution. This
result easily generalizes to higher-order autoregressive pro-
cesses. Tong (1990) also developed many of the properties
of the TAR model. A formal way to quantify the adjustment
process is to write

Aye = Iipyyi—1 + (1 = 1i)paye—1 + &, ()
where I; is the Heaviside indicator function such that
] . 1 lf Ye—1 2 O
Tl 0 ifyog <0 (3)

If the system is convergent, y; = 0 is the long-run equi-
librium value of the sequence. If y;_; is above its long-run
equilibrium value, the adjustment is p1y;—1, and if y,_; is
below long-run equilibrium, the adjustment is pay;_. Be-
cause adjustment is symmetric if p; = po, (1) is a special
case of (2) and (3). Notice that the TAR model can capture
aspects of “deep” movements in a sequence. If, for exam-
ple, —1 < p1 < pa < 0, then the negative phase of the {y:}
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sequence will tend to be more persistent than the positive
phase.

There are three important ways to modify Equations (2)
and (3):

1. Alternative Linear Attractors: Equation (2) assumes
a long-run equilibrium point around 3; = 0. Equations (4)
and (5) use two other important attractors:

Ays = Lip1lys—1 — ao] + (1 = It)p2lys—1 — ao] + 4. (4)
where
L ify,1 >0
I = )
0 if 1 < ag,
and
Ay = Iiprjy—1 — ag — a1 (t — 1))

+ (1= I)palyr—1 —ao —ar(t — )] + &, (5)
where

I 1 ifyy > a9 +a(t—1)
") o if ypo1 <ap+ar(t—1).

In (4), if —2 < {py, p2) < 0, the attractor is such that long-
run equilibrium occurs at the point y; = ag. Clearly, if p; =
p2 = 0, the sequence is a pure random walk. Notice that
symmetric adjustment emerges as a special case. If p; =
p2 # 0, 1t is possible to write (4) as the AR(1) model: Ay, =
ag + pYt—1 + £t

In (5), if =2 < (p1, p2) < 0, the trend line y; = ag+a;t is
an attractor such that the {3} sequence is trend stationary.
The sequence tends to decay at the rate p; if y;—; is above
the trend and at the rate p; if y;_; is below the trend. If ei-
ther p; or po lies outside the interval (-2, 0), however, the
{y:} sequence may not be trend stationary. For example,
if p1 = 0, the sequence will exhibit random-walk behav-
ior whenever y, > ag + at. Again, symmetric adjustment
emerges as a special case. If p; = py # 0, (5) can be written
as Ay, = pla; — ag) — past + pyr—1 + 4.

2. Higher-order Processes: Equations (2), (4), and (5)
can be augmented with lagged changes in the {y:} sequence.
For example, (2) can be augmented such that it becomes the
pth-order process

p—1
Ay = Lipiye—1 + (1 — It)paye—1 + Z GiAys—; +21. (6)

i=1

In working with specifications such as (6), it is possible
to use diagnostic checks of the residuals, such as the auto-
correlogram of the residuals and Ljung-Box tests, and var-
ious model-selection criteria to determine the appropriate
lag length (Tong 1983). To ensure that there is no more than
a single unit root, all the values of r satisfying the inverse
characteristic equation 1 — 317 — 3272 + -+ B, 1rP~! =0
must lie outside the unit circle.

3. Alternative Adjustment Specifications: In (3), the
Heaviside indicator depends on the level of y;_;. A useful
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alternative is to allow the decay to depend on the previ-
ous period’s change in y,;. Consider setting the Heaviside
indicator according to the following rule:

s

Replacing (3) by (7) is especially valuable when ad-
justment is asymmetric such that the series exhibits more
“momentum” in one direction than the other. Models con-
structed using (2) and (7) can be called momentum thresh-
old autoregressive (M-TAR) models. If, for example, |p;| <
|p2|, the M-TAR model exhibits little decay for positive
Ay, but substantial decay for negative Ay; ;. In a sense,
increases tend to persist but decreases tend to revert quickly
toward the attractor. As such, the momentum model can be
used to represent Sichel’s (1993) notion of “sharpness.”

Combining various aspects of the models is possible. For
example, it is possible to allow for an attractor with long-
run equilibrium at y, = a¢ using the Heaviside indicator of
(7) or the trend attractor in a model augmented by lagged
changes in Ay;.

1 if Ayt—l 2 0
0 if Ay—1 <0. (7)

2. TESTING FOR UNIT ROOTS VERSUS TAR AND
M-TAR ADJUSTMENT

To conduct a Monte Carlo experiment that can be used
to test the null hypothesis of a unit root against the alterna-
tive of a TAR or an M-TAR model, 100,000 random-walk
processes of the following form were generated:

Yt = Yi—1 + &, t=1,....T. (8)

For T = 50, 100, 250, and 1,000, a total of T"+ 100 nor-
mally distributed and uncorrelated pseudorandom numbers
with standard deviation equal to unity were drawn to rep-
resent the {z:} sequence. Setting the initial value of the
sequence (i.e., yo) equal to 0, the remaining values of {y;}
were generated using (8). For a test of asymmetric adjust-
ment to be sensible, however, the generated sequence must
cross the attractor at least once. Hence, if a generated se-
quence did not cross the line y; = 0, it was discarded and re-
placed by another randomly generated sequence. Note that
this issue does not arise for the other attractors to be con-
sidered later (i.e., y; = ag and y; = ag + a1t, where ap and
a; are estimated from the data).

For each of the 100,000 series, the first 100 realizations
were discarded and the TAR model given by (2) and (3)
was estimated and three different test statistics were tabu-
lated. The ¢t statistics for the null hypotheses p; = 0 and
p2 = 0 were recorded along with the F statistic for the null
hypothesis p; = p = 0. The most significant of the ¢ statis-
tics is called 7-Max; the least significant of the ¢ statistics
is called 7-Min, and the F statistic is called ¢. Only the ¢
statistic is reported here because it was found to have bet-
ter power than the 7-Max and T-Min statistics. In Panel A
of Table 1, critical values for the ¢ statistic are reported at
the 10%, 5%, and 1% significance levels for each sample
size. For example, for T = 100, the F statistic for the null
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p1 = p2 = 0 exceeded 3.95 in approximately 5% of the
100,000 trials.

The Monte Carlo experiment was repeated for an M-TAR
model using the indicator function given by (7). The corre-
sponding F' test statistics, called ¢*, are reported in Panel
B of Table 1. It is interesting to note that the critical val-
ues for the ¢* statistics are smaller than the corresponding
values for the ¢ statistics.

The attractor y, = 0 is especially convenient because it
contains no coefficients that need to be estimated from the
data. In fact, whenever the attractor is known, the data can
be suitably adjusted so that the attractor y; = 0 is appli-
cable to the transformed data. In most instances, however,
if the y, = ag or y; = ap + ayt attractors are used, the
values of ag and a; will need to be estimated from the
data. Four additional sets of critical values are reported in
Panels C—F of Table 1. It is straightforward to develop crit-
ical values for the attractor 4, = ag, where ag is the sam-
ple mean of the {y:} sequence. These critical values can
be used to test the null hypothesis of a random-walk pro-
cess with a nonzero sample mean against the alternative
of the TAR model given by (4). In essence, for values of
T = 50,100, 250, and 1,000, 100,000 random walks were
generated after initializing the first value of the sequence
(i.e., yo) equal to a constant. Each resulting series was re-
gressed on a constant and the residuals called {7 }. For
each of the {§:} series. the following regression equation
was estimated:

Age = Lipr1e—1 + (1 = I)pati—1 + 4. 9)

Now, the F' statistic for the null hypothesis p; = p2 =0
is called ¢,. Because {g;} is the “demeaned” value of the
sequence, under the alternative hypothesis, (9) is equivalent
to A(jt = Itpl(ytwl - EL[)) + (l _It)pQ(yt—l —&0) + &g, where
dg is the estimated sample mean of the {y;} sequence.

Table 1. The Critical Values for Rejecting the Null

Hypothesis of a Unit Root

Probability of a smaller value

Sample
size 90% 95% 99% 90% 95% 99%
No estimated deterministic components

Panel A: The & statistic Panel B: The &~ statistic
50 3.30 4.12 6.09 2.98 3.81 5.79
100 3.18 3.95 5.69 2.83 3.60 5.38
250 3.10 3.82 553 2.68 3.41 5.10
1,000 3.04 3.75 5.36 2.51 3.21 4.85

Estimated constant attractor

Panel C: The &, statistic Panel D: The <1>; statistic
50 3.84 4.73 6.85 417 5.14 7.43
100 3.79 4.64 6.57 4.11 5.02 7.10
250 3.74 4.56 6.47 4.05 4,95 6.99
1,000 3.74 4.56 6.41 4.05 4.95 6.91

Estimated trend attractor

Panel E: The &7 statistic Panel F: The &3 statistic
50 5.41 6.52 9.14 5.89 7.07 9.77
100 5.27 6.30 8.58 574 6.83 9.21
250 5.18 6.12 8.23 5.64 6.65 8.85
1,000 5.15 6.08 8.12 5.60 6.57 8.74
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The Panel C of Table 1 reports critical values of the ¢,
statistics. The same procedure was used to develop a test
for the null hypothesis of a random-walk process against
the alternative hypothesis of an M-TAR model obtained
by replacing the indicator function in (4) with that in (7).
The associated test statistics, denoted by ¢;,, are reported
in Panel D.

A slight modification of the procedure was used to de-
velop the critical values to test the null hypothesis of a
random walk plus drift against the alternative that the data-
generating process is given by (5). After the appropriate
initialization (i.e., selecting values for ag and yg), each set
of 100,000 series was generated using

Yt = Ao + Y1 T &4, (10)

Thus, under the null hypothesis, {y:} is a random walk
plus drift such that the initial condition may differ from
0. Each resulting series was regressed on a constant and
a trend. The residuals—again called {{; }—were estimated
in the form of (9). Thus, under the alternative hypothesis,
{y:} is generated according to (5). Panel E reports the £
statistic, now called ¢, for the null hypothesis p; = pg = (.
Repeating the procedure for the M-TAR model yielded the
values of the ¢7. statistics shown in Panel F.

To use the statistics, perform the following four steps:

Step 1: As in the usual Dickey~Fuller test, critical val-
ues depend on the presence of the deterministic regressors
(i.e., ap and a1). There is no simple way to jointly test for
the presence of the deterministic elements and a unit root,
however, because ag and/or a; are estimated before setting
the Heaviside indicator. In some instances, such as when
regression residuals are used, it might be clear that the ap-
propriate attractor to consider is y; = 0. Other times, the
data may have a clear trend so that the appropriate null is
that of a random walk plus drift against an alternative of
trend stationarity. If the form of the deterministic regressors
is in doubt, we suggest the ad hoc procedure of fitting the
model with a constant (i.e., a nonzero value of ag). The ¢
and ¢,, statistics and the ¢* and ¢}, statistics are reasonably
close so that an inappropriately included constant should
not substantially affect the unit-root tests. An analysis of
the residuals can indicate the possible omission of a trend.

Step 2: When using the attractors of (4) or (5), regress
the data on the deterministic components (i.e., the constant
ap or the constant and trend ag + a1t) and save the resid-
uals in the sequence {{; }. Next, depending on the type of
asymmetry under consideration, set the indicator function
I; according to (3) or (7). Estimate a regression equation
in the form of (9) and obtain the sample F' statistic for the
null hypothesis p; = po = 0. Compare this sample statistic
with the appropriate critical values shown in Table 1 to de-
termine whether the null hypothesis of a unit root can be
rejected.

If the alternative hypothesis is accepted, it is possible to
test for symmetric versus asymmetric adjustment because
p1 and ps converge to multivariate normal distributions. As
such, the restriction that adjustment is symmetric (i.e., the
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null hypothesis p; = p3) can be tested using the usual F
statistic.

Step 3: Diagnostic checking of the residuals should be
undertaken to ascertain whether the {;} can reasonably be
characterized by a white-noise process. If the residuals are
correlated, return to Step 2 and reestimate the model in the
form Ay, = Lip1gi—1 + (1 — Ii)pafe—1 + 51dG—1 + - +
Bp—1A%—p+1-

Lag lengths can be determined by an analysis of the
regression residuals and/or using model-selection criteria
such as the Akaike information criterion (AIC) or Bayesian
information criterion (BIC).

Step 4: Once it has been determined whether or not the
series is stationary, model building can occur along the lines
suggested by Chan (1993) and Tsay (1989). In a model with
asymmetric adjustment, Tong (1983) demonstrated that the
sample mean is a biased estimate of the attractor. Using
(2) and (3) as an example, if —2 < p; < pg < 0, the {y}
sequence will exhibit more persistence whenever 3, < 0.
As such, the value of the attractor (i.e., Q) will exceed the
expected value of the sequence. Fortunately, Chan (1993)
showed that searching over all values of ag so as to mini-
mize the sum of squared errors from the fitted model yields
a super-consistent estimate of the threshold.

At this point, the dynamic specification in (6) can be gen-
eralized in several directions. It is possible to allow Ay,
to display asymmetric adjustment to its lagged changes.
For example, the magnitude of each 5; could depend on
whether Ay, ; was positive or negative. Moreover, as dis-
cussed by Granger and Terasvirta (1993), the values of p;
and po might be allowed to smoothly adjust over time.

Power Tests

Because unit-root tests suffer from low power, it is of in-
terest to compare the power of the proposed test statistics
to the power of the more traditional Dickey—Fuller test. To-
ward this end, for various values of p; and ps, 2,500 series
were generated using (4) for T = 100. Following Steps 1
and 2, each series was regressed on a constant and an equa-
tion in the form of (9) was estimated. For each of the 2,500
regressions, the sample ¢, statistics were calculated and
compared to the appropriate critical values. The percentage
of times that the null hypothesis was correctly rejected is
reported in the center portion of Table 2.

For comparison purposes, the following regression equa-
tion was estimated for each of the generated sequences:
Ay = ap + pye—1 + &1

Table 2. Power Tests for the ¢, Statistics

oy test Dickey-Fuller test
P1 Pz 10% 5% 1% 10% 5% 1%
-.05 -.056  18.52 9.72 1.84 2288 1164 244
—.10 —.10 46.24 2848 8.08 53.56 33.44 8.96
—.10 —-20 6792 5096 1912 7428 5500 21.04
—.10 —50 90.88 80.44 4896 9236 8120 48.80
—.10 —75 9432 87.36 6060 9416 8648 57.88
—10 150 9844 96.04 8260 9840 9496 7724

NOTE: For each significance Ievel, the entry is the percentage of instances for which the null
hypothesis of a unit root is correctly rejected.
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Table 3. Alternative Power Tests for the ¢, Statistics

Thresholds Autoregressive coefficients $, test Dickey-Fuller test

Ky k2 p1 p2 p3 10% 5% 1% 10% 5% 1%

-1 +1 —.025 —-.25 -.50 37.32 256.76 12.28 38.20 25.64 11.12

-2 +2 —.025 -.125 -.25 35.80 24.08 8.72 38.68 26.24 9.52
—-.025 —.125 —.50 40.16 30.20 14.28 41.08 29.44 13.36
-.025 -.25 —.50 53.36 42.44 26.88 50.36 40.56 24.56
—.025 -.25 —1.00 57.84 49.76 35.52 53.68 44.48 29.36

-2 +1 —.025 -.25 ~1.00 58.80 51.04 37.76 54.76 4468 29.76

—1 +2 —-.025 -.25 —1.00 41.16 30.84 15.60 41.48 29.44 12.48

-2 +.2 —.025 —.125 —-.50 42.08 31.84 16.24 41.08 30.48 15.16
—.025 —.25 —.50 56.52 46.00 28.12 52.40 42.20 25.24
—.025 —-.25 —1.00 57.96 49.68 34.64 54.44 44.04 27.64
—.050 -.25 —1.00 80.68 72.40 54.56 78.12 67.00 44.80

NOTE: For each significance level, the entry is the percentage of instances for which the null hypothesis of a unit root is correctly rejected.

The ¢ statistic for the null hypothesis p = 0 was compared
to the Dickey—Fuller 7, statistic (i.e., —2.89 at the 5% level
and —3.51 at the 1% level). The percentage of times the
Dickey-Fuller test correctly rejected the null hypothesis is
shown in the right portion of Table 2.

To take a specific example, using the values p; = —.10
and ps = —.20, the ¢, statistic correctly indicated stationar-
ity in 67.92%, 50.96%, and 19.12% of the trials at the 10%,
5%, and 1% significance levels, respectively. The Dickey—
Fuller performed substantially better. At the 10%, 5%, and
1% significance levels, the null of a unit root was correctly
rejected in 74.28%, 55.00%, and 21.04% of the trials. In-
spection of Table 2 reveals that, even in the presence of a
substantial amount of asymmetry, the power of the Dickey-
Fuller test generally exceeds the power of the ¢, statistic.
The poor performance of the ¢, statistic is due to the use
of a two-step procedure and to the estimation of one ad-
ditional coefficient as compared to the Dickey~Fuller test.
The resulting loss of power does not overcome the gain
resulting from estimating a correctly specified model.

Table 2 reports results for the case in which the true
data-generating process has only a single threshold. It is
interesting to note that the relative power of the ¢, statis-
tic is improved in a multithreshold setting. Pippenger and
Goering (1993) considered TAR processes that behave as
random walks within a band but exhibit symmetric decay
when outside the band. They showed that the power of the

Table 4. Power Tests for the @; Statistics

7, test Dickey—Fuller test
p1 p2 10% 5% 1% 10% 5% 1%
-.025 -.05 17.76 9.08 248 18.04 9.92 2.04
—.025 —.10 32.00 18.88 4.72 28.48 15.12 3.56
-.025 -.20 76.64 ©60.68 2636 60.60 3860 11.12
-.05 —.05 20.84 11.20 272 2288 11.64 2.44
—.05 -10 35.92 2152 5.80 36.20 20.92 5.60
-.05 —.20 76.28 58.96 25.08 6864 46,52 13.96
-.10 —.10 4540 28.40 7.60 5356 33.44 8.96
-.10 —.20 79.04 6348 2596 80.72 6260 2492
—.10 —-50 10000 9992 9888 9992 9928 90.72

NOTE: For each significance level, the entry is the percentage of instances for which the null
hypothesis of a unit root is correctly rejected.

Dickey-Fuller test is substantially reduced in this three-
regime setting. We shall examine the power of the Dickey—
Fuller test when there is asymmetric decay outside of the
band. To illustrate the point, for T = 100, 2,500 series were
generated using the following modification of (4):

Ay = I(1)ip1[yi—1 — ao] + I(2)tp2lys—1 — ag)
+ 1(3)palyi—1 — ao) + €4, (4)

where I(1), = 1 if y,_1 — ap < k; and O otherwise, 1(2),
=1if k) <1 —aog < ko and 0 otherwise, and 7{3); = 1
if ys_1 — ap > ko and O otherwise.

There are two distinct thresholds (k; and k»), and the
autoregressive nature of {y;} is dependent on each regime.
As can be seen in Table 3, the ¢, statistic can perform
quite well as compared to the Dickey—Fuller statistic. For
the threshold values &, = —2 and k; = +2 and for the
autoregressive coefficients p; = —.025,p3 = .25, and
ps = —.b, the ¢, statistic correctly identified that the model
was stationary in 53.36%, 42.44%, and 26.88% of the cases
at the 10%, 5%, and 1% significance levels, respectively. At
the same significance levels, the Dickey—Fuller 7, statistic
identified that the model was stationary in 50.36%, 40.56%,
and 24.56% of the cases. Inspection of Table 3 reveals that
increasing the degree of asymmetry increases the relative
power of the ¢, test over the Dickey—Fuller test. For exam-
ple, set ps = —1 but retain all of the other aforementioned
values (i.e.. k1 = —2,ky = +2, p1 = —.025, and p; = —.25).
At the 1% level, the ¢, statistic and the 7, statistic cor-
rectly identified a stationary series in 35.52% and 29.36%
of the cases, respectively. The power of both tests increases
in such a way that the power of the ¢, statistic increases
relative to that of the 7, statistic. As such, the relative power
of the ¢, test is greatest when one of the adjustment coef-
ficients is very small.

Table 4 reports results using the two-regime version of
the M-TAR model. Notice that the test for the M-TAR
model has greater power than the test for the corresponding
TAR model. Notice also that the power of the ¢, statistic
is often substantially larger than that of the corresponding
7, statistic. The power of the Dickey—Fuller test exceeds
that of the ¢, statistic when the true adjustment process is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Enders and Granger: Unit-Root Tests and Asymmetric Adjustment

20 - e

15 -

10 -

AL S LN, 0. L S L LS UL B S SR 00 UL B WL B SO R T
1958 1962 1966 1970 1974 1978 1982 1986 1930 1994

Figure 1. The Short-Term Rate, Long-Term Rate, and Interest-Rate
Differential. The quarterly values of the short-term interest rate, the long-

term interest rate, and the interest-rate differential are shown by the solid
line, dotted line, and dashed line, respectively.

symmetric. When there is asymmetric adjustment, however,
the relative power of the ¢j, statistic is enhanced. For ex-
ample, if p; = —.025 and py = —.20, the ¢;, test correctly
indicated a stationary process 57% more often than the 7,
statistic at the 5% level and more than twice as often at the
1% level.

3. ASYMMETRIC ADJUSTMENT OF
INTEREST RATES

The appropriate use of the various test statistics just de-
veloped can be illustrated by considering the relationship
between long-term and short-term interest rates. Toward
this end, quarterly values of the federal funds rate and
10-year interest rate on U.S. government securities were
obtained from the CD-ROM version of the International
Financial Statistics over the 1958:Q1-1994:Q1 period. Fig-
ure 1 shows the short-term rate (rg), the long-term rate
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(rp), and the interest-rate differential (rp). It is generally
agreed (see Stock and Watson 1988) that short-term and
long-term interest rates appear to be I(1) variables that
are cointegrated such that the interest-rate differential is
stationary. To formally test the asymmetric-adjustment hy-
pothesis, the interest-rate differential rs — r;, was regressed
on a constant so that the equilibrium relationship has the
form rg — 71, = ag.

As shown in the first two columns of Table 5, TAR mod-
els were estimated for various lag lengths. Notice that the
AIC selects a model with one lagged change but the BIC se-
lects a model without lags. In the model without any lagged
changes, the sample value of ¢, is 5.25, and in the model
with one lagged change, the sample value of ¢, is 6.77.
Comparing these values to the 5% critical value of 4.64, it
is possible to reject the null hypothesis p1 = pa = 0. Note
that the sample value of ¢, = 6.77 is significant at the 1%
level. Given that the interest-rate differential is stationary,
it is possible to test the null p; = p; using the normal dis-
tribution. In each case, the value of the F statistic is small
enough that it is not possible to reject the null of symmetric
adjustment.

Next, the Heaviside indicator was set according to the
momentum model given by (7). As shown in the third and
fourth columns of Table 5, the M-TAR model was estimated
for various lag lengths. Again the AIC selects a model with
one lagged change, but the BIC selects a model without
lags. In the model without any lagged changes, the sample
value of ¢}, is 8.64, and in the model with one lagged change
the sample value of ¢, is 9.50. Comparing these values to
the 1% critical value of 7.10, it is possible to reject the
null hypothesis p; = p2 = 0. Now, the test of the null
hypothesis p1 = po is strongly rejected. With no lagged
changes, the value of F’ is significant at the .009 level, and
with one lagged change the significance level is .018. Hence,
adjustment appears to be asymmetric such that the attractor
is stronger for negative changes in the term structure.

In addition, as reported in the next two columns of Ta-
ble 5, a standard Dickey—Fuller test was performed on the

Table 5. Estimnates of the Interest-Rate Differential

Linear attractor model Momentum model

Dickey—Fuller mode! Momentum-consistent9

Lags 0 1 0 1 0 7 0 1
D1 —-.159 —.183 —.041 —.068 —.133 -.156 —.061 —.050
(—3.01)2 (—3.42) (—.746) (—1.20) (—.313) (—3.58) (—1.37) (—.965)
02 —.085 —.106 —.264 —.271 NA NA —.293 —.299
(—1.19)° (—1.47) (—4.09) (—4.22) (—5.19) (—5.11)
AlC* 670.91 669.00 664.63 664.01 669.59 667.79 657.71 659.55
BIC 676.83 677.89 670.56 672.90 672.55 673.72 666.60 671.39
&8 5.25 6.77 8.64 9.50 NA NA 13.64 13.08
p1 = p2t 676 778 7.02 577 16.44 12.42
(.421) (.379) (.009) (.018) (.000) (.000)
Qay 2.81 296 519 1.46 2.98 377 1.75 233
(.590) (.990) (.268) (.834) (.561) (.984) (.781) (.675)

NOTES: 2 Entries in this row are the t statistic for the null hypothesis py = 0. ® Entries in this row are the t statistic for the null hypothesus p> = 0.%The AIC is calculated as 7*iog(SSR) + 2%n,
where T = number of usable observations, SSR = sum of squared residuals, and n = number of regressors. The BIC is calculated as T*log(SSR) + n*log (T). Because the Dnckey—FulIer tests
were performed on the residuals of the interest differential regressed on a constant, the AIC and BIC for the Dickey-Fuller tests are directly comparable to the other values in the table. 9 Entries in
this row are the sample vaiues of ¢, or ¢"‘ © Entries in this row are the sample F statistics for the null hypothesis that the adjustment coefficients are equal. Significance levels are in parentheses
below. Q(4) is the Ljung—Box statistic lhat the first four of the residual autocorrelations are jointly equal to 0. The significance level is in parentheses below. 9 An intercept was included in the
momentum-consistent models because the mean differs from the attractor (i.e., the residuals do not have a zero mean).
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interest-rate differential. The sample values of 7, (-3.13
with no lags and —3.58 with one lag) both indicate that
the null hypothesis of nonstationarity can be rejected at
conventional significance levels. Observe that for each lag
length, the estimated adjustment coefficient is between the
estimates of p; and p, from the corresponding asymmet-
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correction model shown in Table 6. Using the consistent
estimate of the threshold, fitted equations have the form
(with ¢ statistics in parentheses)

Arpy = An(L)Arpson + Ap(L)Argi—
Fi1 =2.89 Fio=1.12

ric adjustment model. In comparing the various models, the + .088z_plus,_; + .037z.minus;_;, (12)
diagnostic checks of the residuals indicated that each is ad- (2.59) (.959)
equate. The momentum models, however, fit substantially
better than the TAR and the linear attractor models. The and
AIC and BIC both select the momentum model even though Arse = Ap(D)Arp,1 + As(L)Arg,
the M-TAR model entails estimating one more coefficient ' Fyy = 0.98 Fyy = 959
than does the linear adjustment model.
Given that the term structure displays M-TAR adjust- + .030z-plus,_, — .123z_minus;—;. (13)

ment, Chan’s (1993) method finds the consistent estimate
of the threshold to be 2.64. As shown on the last portion
of Table 5, the best-fitting M-TAR model using the consis-
tent estimate of the attractor is given by (¢ statistics are in
parentheses)

Arp, = 265 — .0611,(rpi_1 + 2.64)
(2.57)  (—1.38)

- 293(1 — [t)(TDt—l + 264)
(—5.19)

(1

The residuals of (11) show no evidence of serial correlation,
and introducing lagged changes of Arp reduces the fit. For
example, with one lagged change, the ¢ statistic of Arp;_;
is only —.404. The prominent feature of Table 5 is that the
M-TAR models using the consistent estimator fit substan-
tially better than the other models. Moreover, the evidence
for asymmetric adjustment is enhanced. Using (11), the F
statistic for the null hypothesis p; = p2 = 0 is 13.64 and
the F statistic for the null hypothesis p; = p2 is 16.44.
The positive finding of cointegration with M-TAR ad-
justment justifies the estimation of the asymmetric error-

(.445) (—3.10)

where z_plus,_y = Ii(rg -1 —rre—1 +2.64). z_minus;_; =
(1—I)(res—1 —rr4-1 +2.64), I, = momentum Heaviside
indicator function, A;;(L) is a polynomial in the lag opera-
tor L, and Fj; is the F statistic for the null hypothesis that
all coefficients of A;;(L) = 0.

The key feature in (12) and (13) is the pattern of the
estimated coefficients for z_plus and z_minus. In (12), the
t statistics imply that long-term rate responds to a posi-
tive, but not a negative, discrepancy in the term structure.
In (13), the t statistics indicate that the short-term rate re-
sponds to a negative, but not a positive, discrepancy. Thus,
in response to a one-unit positive gap, the long-term rate is
estimated to rise by .088 units, and in response to a one-
unit negative gap, the short-term rate is estimated to rise by
.123 units. Moreover, the F statistics concerning causality
indicate that, at conventional significance levels, both the
long-term and short-term rates respond to lagged changes
in the long-term rate but not to lagged changes in the short-
term rate.

Although not shown in Table 6, (12) and (13) were also
estimated using lags of 8, 4, and 1 quarters and various

Table 6. Estimates of the Error-Correction Models

1. The consistent M-TAR model with two lags

Arny= —-119 + 25854r; ¢ — 014Ar > — .045Ars; 4 067Arg ;2 + .088zplus,_y + .037z.minus;_4
(—1.72) (2.40) (—.130) (—.739) (—1.35) (2.59) (.959)
Fiy = 289 Fiz = 112
(.059) (:329)
Argy =.129 + 793Ar 4y — 504Ar s » - .057Ars; 1 — .055Ars;p + .030zplus,_; - .123z_minus;_,
.956) (3.80) (—2.44) (—.481) (—.565) (.445) (-3.10)
Foy = 9.86 Fop = 259 AIC = —259.26; BIC = —-217.88
(.000) (.773) X2 = 10.1; Significance = .006
2. The symmelric error-correction model with two lags
Ary =.013 + -218ArL,t—1 - .036AI’L)r_2 — .002Arg -1 — .OEOAI’SJ_Z + .067(rgt_1 — rip—1 + .761)
(.319) (2.14) (—.344) (—.043) (—1.22) (2.31)
Fiy = 230 Fip = .748
(.104) (.475)
Argy =.130 + B01Ar ;v — .617Ar; 2 + .160Ar5 022Arg ;.2 — .081{rgi—y — rip—y + .761)
(.155) (2.92) (—2.94) (—1.62) (—.226) (1.38)
Fy = .785 Fo; = 133 AIC = —252.64;BIC = —217.17
(.001) (.267)

NOTE: AIC and BIC are the multiequation AIC and BIC, respectively. Fj is the £ statistic for the test that all coefficients of L i the polynomial Aj;(L) are equal to 0, the significance level is shown
in the parentheses below. The xz statistic is the likelihood ratio test for the null hypothesis that p11 = py2. p2y = pp2 allowing for the different estimated attractors; the significance level of the null
hypothesis is also reported.
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lag-length tests were performed. The multivariate AIC se-
lected the model with eight lags, and the multivariate BIC
selected the two-lag model. In the eight-lag model, aside
from a single coefficient at lag 7 in the equation for the
short-term interest rate, it was possible to set all coefficients
past lag 2 equal to 0. It is plausible that the importance of
this single coefficient is spurious. The key point is that the
coefficients for the error-correction terms were quite robust
to lag length.

By way of contrast, a standard error-correction model
assuming symmetric adjustment is reported in the lower
portion of Table 6. In spite of the extra two coefficient esti-
mates, both the multivariate AIC and BIC select the asym-
metric model over the symmetric model. Moreover, the like-
lihood ratio test for the restriction implied by symmetric
error correction yields a x? value of 10.1 (with a p value
of .006). Notice that the coefficients on the error-correction
terms in the symmetric model are each between those in the
asymmetric model. Respectively, the long-term rate and the
short-term rate are predicted to change by .067 units and
—.081 units multiplied by any discrepancy (whether posi-
tive or negative) in the term structure. It is interesting that
the ¢ statistic for the error-correction term in the equation
for the short-term rate is only 1.38. The implication is that
only the long-term rate adjusts to restore the term structure.

Because the aim of this section is to illustrate the use
of the various tests developed in the article, the impulse-
response functions and variance decompositions are not
reported here. Note, however, that the impulse responses
and variance decompositions depend on the sign of the ini-
tial shocks. Given the asymmetric nature of the adjustment
process, positive innovations will yield different time paths
from negative innovations.

4. CONCLUDING REMARKS

A generalization of the Dickey—Fuller test was developed
that can be used to test the null hypothesis of a unit root
against the alternative hypothesis of stationarity with asym-
metric adjustment. In addition to the standard TAR model.
we introduced the momentum threshold autoregressive (M-
TAR) model to capture possible “sharp” movements in a
sequence. If adjustment is approximately symmetric, the
Dickey—Fuller test is more powerful than any of the tests
developed here. With several plausible types of asymmetry,
however, the power of the proposed statistics—particularly
those for the M-TAR model—exceed those of the corre-
sponding Dickey—Fuller test. The use of the statistics was il-
lustrated using the term structure of interest rates. An asym-
metric error-correction model with M-TAR adjustment was
estimated such that the long-term rate responds to the pre-
vious change in the long-term rate and to the deviation from
the equilibrium relationship only when there is a negative
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discrepancy between the short-term and long-term rate. The
short-term rate responds to the previous changes in both
rates and to the deviation from the equilibrium relation-

ship only when there is a positive discrepancy between the
short-term and long-term rates.

ACKNOWLEDGMENTS

This article was written while the first author was a Vis-
iting Scholar at the University of California at San Diego.
We thank Frank J. Breidt, Graham Elliott, Wayne Fuller,
four anonymous referees, and workshop members at the
University of California at San Diego and the University of
California at Riverside for helpful suggestions.

[Received March 1996. Revised August 1997.]

REFERENCES

Balke, N. S., and Fomby, T. B. (1996), “Threshold Cointegration,” work-
ing paper, Southern Methodist University (submitted to International
Economic Review).

Chan, K. S. (1993), “Consistency and Limiting Distribution of the Least
Squares Estimator of a Threshold Autoregressive Model,” The Annals
of Statistics, 21, 520-533.

Falk, B. (1986), “Further Evidence on the Asymmetric Behavior of Eco-
nomic Time Series Over the Business Cycle,” Journal of Political Econ-
omy, 94, 1096-1109.

Granger, C. W. ], and Lee, T. H. (1989), “Investigation of Production,
Sales, and Inventory Relationships Using Multicointegration and Non-
symmetric Error-Correction Models,” Journal of Applied Econometrics,
4, §145-5159.

Granger, C. W. I, and Terasvirta, T. (1993), Modelling Nonlinear Eco-
nomic Relationships, Oxford, U.K.: Oxford University Press.

Neftci, S. N. (1984), “Are Economic Time Series Asymmetric Over the
Business Cycle?” Journal of Political Economy, 92, 307-328.

Nelson, C. R., and Plosser, C. I. (1982), “Trends and Random Walks in
Macroeconomic Time Series: Some Evidence and Implications,” Journal
of Monetary Economics, 10, 139-162.

Pippenger, M. K., and Goering, G. E. (1993), “A Note on the Empirical
Power of Unit Root Tests Under Threshold Processes,” Oxford Bulletin
of Economics and Statistics, 55, 473-481.

Potter, S. (1995), “A Nonlinear Approach to U.S. GNP, Journal of Applied
Econometrics, 10, 109-125.

Ramsey, J. B., and Rothman, P. (1996), “Time Irreversibility and Business
Cycle Asymmetry,” Journal of Money, Credit and Banking, 28, 1-21.
Sichel, D. E. (1993), “Business Cycle Asymmetry: A Deeper Look,” Eco-

nomic Inquiry, 31, 224-236.

Stock, J., and Watson, M. (1988), “Testing for Common Trends,” Journal
of the American Statistical Association, 83, 1097-1107.

Terasvirta, T., and Anderson, H. M. (1992), “Characterizing Nonlinearities
in Business Cycles Using Smooth Transition Autoregressive Models,”
Journal of Applied Econometrics, 7, S119-S139.

Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis,
New York: Springer-Verlag.

(1990), Non-Linear Time-Series: A Dynamical Approach, Oxford,
U.K.: Oxford University Press.

Tsay, R. S. (1989), “Testing and Modeling Threshold Autoregressive Pro-
cesses,” Journal of the American Statistical Association, 84, 231-240.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



